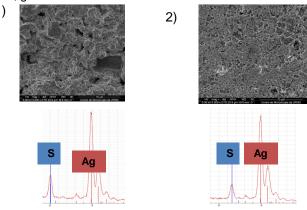
Remoção de Filmes Negros de Ag₂S em Objetos de Prata com Peróxido de Hidrogênio e Glicinato de Sódio

Samara S. Asevedo (IC), *João C. D. Figueiredo Junior (PQ) ¹Universidade Federal de Minas Gerais.

Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte-MG, CEP:31270-901. Departamento de Química, laboratório 285. *joaoc@ufmg.br

Palavras Chave: filmes de Ag₂S, remoção, peróxido de hidrogênio, glicinato de sódio.

Introdução


Os materiais em prata podem reagir com sulfetos presentes na atmosfera formando um filme composto por Ag₂S de acordo com a equação 1.

$$4 Ag_{(s)} + O_{2(g)} + 2 H_2S_{(g)} \rightarrow 2 Ag_2S_{(s)} + 2 H_2O_{(g)}$$
 (1)

A deposição desse filme é gradual. Inicialmente ele é marrom e, com o tempo, se torna negro na medida em que se torna mais espesso. Em relação a bens culturais, esta deterioração diminui o valor estético do bem, gerando a necessidade de sua remoção em procedimento de restauração. Filmes negros mais espessos apresentam maior dificuldade para serem removidos exigindo métodos de limpeza mecânicos ou eletroquímicos. O objetivo deste trabalho é estudar um método químico de remoção dos filmes negros de Ag₂S em materiais artísticos em prata. Além da remoção, este método não deve agredir inscrições e detalhes, ser de baixo custo e seguro para a saúde do operador, assim como duradoura para o objeto. Para isso, foi utilizado o peróxido de hidrogênio (H₂O₂) e, em seguida, o glicinato de sódio (NaC₂H₄NO₂) no processo de remoção do filme. Estes compostos são de fácil acesso, baixo custo e inofensivos à saúde.


Resultados e Discussão

Moedas de liga de prata 900 (90% Ag/10% Cu) foram utilizadas como fac-símiles. O filme negro de Ag₂S foi obtido através de imersão por 5 h em solução 0,1 mol.L⁻¹ de tiouréia (pH = 8). A remoção dos filmes foi realizada inicialmente por imersão por 2 h em solução a 30% de H₂O₂ seguida por imersão por 2 h em solução 0,1 mol. L^{-1} de NaC₂H₄NO₂ (pH = 10). A superfície das moedas, durante o processo, foi estudada por Microscopia Eletrônica de Varredura (MEV) e Espectroscopia de Fluorescência de Raios-Energia Dispersiva (EDS). procedimento houve a remoção do filme negro. Através da análise de MEV e EDS foi possível constatar a reatividade dos reagentes com o filme de Ag₂S. Imagens e espectros obtidos de processo de remoção parcial mostraram a diminuição relativa da intensidade de S em relação à Ag.

Figura 1. Resultados de MEV e EDS da remoção com H_2O_2 seguido de glicinato. Filme de Ag_2S (1) e após remoção parcial (2).

Os produtos solúveis obtidos das imersões foram analisados por Espectroscopia de Absorção no Infravermelho (IV). Observaram-se as seguintes bandas no espectro (Fig.2): 1359 cm $^{-1}$ (v Cu-O); 551 cm $^{-1}$ (v Ag-O); 3280 cm $^{-1}$ (v O-H); 1527 cm $^{-1}$ (δ O-H); 1788 cm $^{-1}$ (v PO $_4^{3-}$) e 962 cm $^{-1}$ (δ PO $_4^{3-}$). Os produtos com Cu e Ag indicam a remoção de produtos de corrosão e a presença de fosfato é devido a $\rm H_3PO_4$ contido na $\rm H_2O_2$ como estabilizante.

Figura 2. Espectro de Absorção no Infravermelho dos produtos solúveis da reação do filme de Ag_2S com H_2O_2 seguido por $NaC_2H_4NO_2$.

Conclusões

O uso de H_2O_2 seguido por solução de $NaC_2H_4NO_2$ mostrou-se como procedimento promissor para a remoção de filmes negros de Ag_2S em objetos de prata.

Agradecimentos

CNPQ, Centro de Microscopia da UFMG

1 Costa, V. Rev. Conserv., 2001, 2, 18-34.