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Introduction |

Cryptolatifolione (1) was first isolated from the bark
of Cryptocarya latifolia by Wijewardene and
coworkers." The authors assigned the stereogenic
center at C-6 as R, but the absolute configuration at
C-8 remains unknown. This work aims the total
synthesis of 1 and its epimer at C-8, and the
elucidation of the absolute configuration of
cryptolatifolione (1).

Results and Discussion |

Synthesis of acrylate 5 began with the
enantioselective iridium catalyzed allylation® of 2 to
provide diol 3 in 60% vyield, dr > 20:1 and ee > 99%
(Scheme 1). Diol 3 was monoprotected as the PMB
ether in 71% vyield, followed by esterification with
acryloyl chloride in 93% yield. In the next step, we
were surprised to observe that the ring closing

metathesis furnished exclusively the seven-
membered ring 6, instead of the desired
dihydropyranone 7.
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Scheme 1. First approach to Cryptolatifolione (1)

We then decided to replace the acrylate by an allyl
group, and install the carbonyl group in a later stage
via C-H oxidation. For that, diol 3 was treated with
allyl bromide to produce ether 8 in 75% yield,
followed by esterification with Ac,O in 82% vyield
(Scheme 2). In the next step, we were pleased to
observe that dihydropyran 10 could be obtained in
high selectivity (>95:5) in 85% yield using only 1
mol% of Grubbs’ catalyst Il (Scheme 2). After
several experiments, we found that use of PCC and
pyridine selectively oxidized the C-2 position to
furnish the dihydropyranone 12 in 61% yield. The
last C-C bond was constructed by a cross-
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metathesis reaction between 12 and 3-hexene.
Dihydropyranone 13 was isolated exclusively as the
E-isomer at the newly created double bond
(Scheme 2).
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Scheme 2. Synthesis of epimer 13

The syn C-6/C-8 stereochemistry was secured
after Dess-Martin periodinane oxidation of alcohol 8
and reduction under chelation control, affording diol
14 in 64% yield (dr=79:21). The remaining steps
were carried out as described for 13
Dihydropyranone 1, obtained after cross metathesis
reaction, proved to be identical to the natural

product reported by Wijewardene and coworkers.*
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Scheme 3. Synthesis of Cryptolaufohone (1)

Conclusions

In summary, we developed the first total synthesis
of Cryptolatifolione (1) in 8 steps and 10% overall
yield, and its epimer at C-8 in 6 steps and 17%
overall yield. The syntheses feature construction of
four C-C bonds by catalytic methods and the use of
a C-H oxidation to install the carbonyl group in a
protecting group-free fashion.
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