Simetrias e assimetrias na anisotropia de coordenação de complexos tetrakis de íons európio (III) e seu impacto na luminescência

Renata X. D. Nascimento (IC)*, Nathália B. D. Lima(PG), Simone M. D. C. Gonçalves (PQ) e Alfredo M. Simas (PQ)

*renata.xaviernascimento@ufpe.br

Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE.

Palavras Chave: európio, luminescência, eficiência quântica, assimetria.

Introdução

Recentemente, nosso grupo de pesquisa propôs uma conjectura que relaciona o aumento nos valores de eficiência quântica, η , com o aumento na diversidade estrutural. Ou seja, quanto mais assimétrico for o complexo maior será o valor de η^1 . No sentido de verificar a generalidade da nossa conjectura, expandimos os estudos para complexos tetrakis de íon Eu^{3+} , com os quatro ligantes β -dicetonatos. Assim, passamos a investigar a luminescência de complexos tetrakis simétricos ($[Eu(\beta\text{-dic}_1)_4]^*K^+$) e mistos ($[Eu(\beta\text{-dic}_1)_3(\beta\text{-dic}_2)_1]^*K^+$ e ($[Eu(\beta\text{-dic}_1)_2$ ($\beta\text{-dic}_2)_2]^*K^+$, sendo $\beta\text{-dicetonato} = DBM e BTFA (Figura 1).$

Figura 1. Estrutura dos ligantes DBM e BTFA

Resultados e Discussão

Os espectros de excitação, emissão e tempo de vida foram obtidos de soluções, em CDCl₃, dos complexos sintetizados. A partir destas análises, os valores de eficiência quântica foram calculados com a fórmula:

 η = A_{rad} /(A_{rad} + A_{nrad}), sendo Arad e Anrad as taxas radiativas e não radiativas respectivamente.

Os valores de η dos complexos sintetizados estão apresentados na tabela 1.

Tabela 1. Valores de eficiência quântica dos complexos sintetizados.

Complexo	η(%)
[Eu(BTFA) ₄] ⁻ K ⁺	45
[Eu(BTFA) ₃ (DBM) ₁] ⁻ K ⁺	40
[[Eu(BTFA) ₂ (DBM) ₂] ⁻ K ⁺	19
[Eu(BTFA)₁(DBM)₃]¯K ⁺	39
[Eu(DBM) ₄] ⁻ K ⁺	1

A partir dos nossos resultados foi possível observar que o complexo tetrakis simétrico de BTFA possui um valor de eficiência quântica consideravelmente maior (45%) que o complexo simétrico de DBM (1%). Isto ocorre provavelmente devido ao ligante

DBM ser simétrico (fato que diminui os valores de η). Por sua vez, o ligante BTFA é assimétrico em relação aos substituintes do β-dicetonato (fato que aumenta os valores de η). Em relação aos complexos mistos, verificamos dois fenômenos: i) houve um boost de 225% no valor esperado de η para [Eu(BTFA)₁(DBM)₃]K⁺, quando comparado à média ponderada dos η para a situação em que existem apenas ligantes de um tipo. comprovamos pela primeira vez que a provável maior centrossimetria estrutural no complexo [Eu(BTFA)₂(DBM)₂⁻K⁺] levou a uma redução no valor esperado de η de 17% em relação ao $\eta_{\text{médio}},$ como seria de se esperar, pela regra de Laporte. A figura 2 ilustra os fenômenos observados neste trabalho.

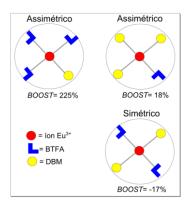


Figura 2. Efeitos da simetria e assimetria de coordenação na eficiência quântica de luminescência de complexos tetrakis. Boost é a variação percentual em η quando comparado à média ponderada dos η para os complexos simétricos.

Conclusões

Comprovamos pela primeira vez que a simetria de coordenação tem um forte efeito na eficiência quântica de luminescência de complexos tetrakis de Eu(III). De fato, enquanto uma coordenação simétrica leva a um boost de -17%, uma coordenação assimétrica pode levar a valores de boost que chegam a até 225%.

Agradecimentos

Os autores agradecem ao CNPq, à FACEPE e ao PRONEX.

¹ Lima, Nathália B. D.; Gonçalves, Simone M. C.; Júnior, Severino A.; Simas, Alfredo M., SCI REP-UK, **2013**, v. 3, p. 2395.