Desenvolvimento de uma Função Empírica de Pontuação para Predição da Afinidade de Ligação de Inibidores de Acetilcolinesterase.

Diogo S. G. Pinho¹ (PG)*, Carlos Maurício R. Sant'Anna¹ (PQ), Camila S. de Magalhães² (PQ). *me.diogopinho@gmail.com

Palavras Chave: Atracamento Molecular, Acetilcolinesterase, Função de Pontuação.

Introdução

Na área de Desenho de Fármacos Baseado em Estrutura as funções de pontuação (ou funções scoring) possuem um papel fundamental, pois têm por objetivo predizer a afinidade de ligação de pequenas moléculas candidatas a novos fármacos em relação a um alvo molecular, sendo frequentemente utilizadas por programas de atracamento molecular (docking) e em experimentos de triagem virtual.

Embora avanços significativos tenham sido obtidos no desenvolvimento de funções de pontuação, a maior parte destas não produz bons resultados em todos os casos¹. Este fato motiva o desenvolvimento de novas funções para alvos moleculares específicos de interesse farmacológico. O objetivo deste trabalho é o desenvolvimento de uma função de pontuação específica visando a predição da afinidade de ligação de inibidores de Acetilcolinesterase (AChE).

Resultados e Discussão

A função de pontuação empírica objeto deste trabalho foi construída com base em um conjunto de 41 inibidores de AChE, obtido da literatura²⁻⁴. Os valores de IC50 para estes inibidores variam de 1,06nM a 17990nM. Cálculos de atracamento molecular e obtenção de descritores moleculares foram realizados com o programa GOLD 5.1 (CCDC) (receptor: 1N5R.pdb). Um total de 37 descritores incluindo propriedades físico-químicas dos ligantes, da proteína e do complexo formado após o atracamento foram calculados. Para a construção da função, foram excluídos descritores relacionados ao ligante (com exceção do número de torções) e à proteína antes do atracamento, além de descritores já modificados por algum coeficiente de ponderação do programa GOLD, totalizando 17 descritores selecionados.

Análise de regressão linear com o programa WEKA 3.7.10 (University of Waikato) foi realizada utilizando-se valores de pIC50 e os valores médios dos descritores considerando as 5 melhores poses do ligante obtidas no atracamento molecular. Dois modelos foram gerados: (1) utilizando todo o conjunto de 41 moléculas para treinamento e teste; 37ª Reunião Anual da Sociedade Brasileira de Química

e (2) utilizando um conjunto de treinamento com 36 moléculas e um conjunto teste com 5 moléculas selecionadas aleatoriamente, para validação externa. Esses modelos são mostrados na Tabela 1.

Tabela 1. Funções de Pontuação.

EXP	Modelo*	R
1	0.6454 * NAEP -0.719 * NDEP -	0.88
	0.1026 * NLR + 0.7951 * PLPh +	
	0.0831 * PLPb - 1.9042 * PLPr +	
	1.4164 * ROT - 1.0918	
2	-0.055 * NHEL - 0.5275 * NDEP +	0.81
	0.6852 * NAHL - 0.1409 * NLR -	
	0.876 * NC3 + 0.7029 * PLPh +	
	0.1099 * PLPb - 1.6092 * PLPr +	
	1.8336 * ROT + 0.3007	

*Descritores que compõem as funções obtidas: NAEP: # aceptores encobertos da proteína; NDEP: # doadores encobertos da proteína; NLR: # torções do ligante; NC3: # ligações de hidrogênio; PLPh: termo polar da função PLP; PLPb: termo da função PLP sobre átomos encobertos; PLPr: termo repulsivo da função PLP;ROT: penalização para ligações torcionáveis "congeladas". NHEL: # de átomos hidrofóbicos do ligante expostos ao solvente; NAHL: # átomos do ligante em ligações de hidrogênio.

Conclusões

As funções construídas apresentaram um coeficiente de correlação em torno de 0,8. Para o modelo testado com um conjunto externo (EXP 2), a correlação obtida indica que 65% da variância dos dados é explicada pelo modelo. O valor de R² predito (*predicted* R²) para o modelo do experimento 2 é de 0,64. Análises com um número maior de inibidores estão em andamento visando melhorar a avaliação e a capacidade preditiva do modelo.

Agradecimentos

CAPES, CNPq, Faperj e INCT-INOFAR pela bolsa e suporte.

¹ Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, Seropédica – RJ.

² Universidade Federal do Rio de Janeiro, Polo Xerém, Estrada de Xerém 27, Duque de Caxias – RJ.

¹ Koes, D. R; Baumgartner, M. P; Camacho, C. J; J. Chem. Inf. Model. 53 (2013), 1893–1904

² Tang H. et al; Bio. & Med. Chem. Letters 17 (2007) 3765–3768.

³ Tang H at al Euro J of Med. Chemistry 44 (2009) 2523–2532.

⁴ Tang H. et al Euro J of Med Chemistry 46 (2011) 4970-4979.