Estudo da influência da razão SiO₂/Al₂O₃ na reação de desidratação de glicerol a acroleína sobre o zeólito ferrierita

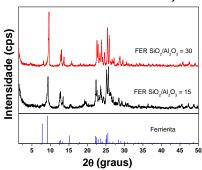
Mauricio B. Santos^{1*}(PG), (PG), Fernanda T. Cruz¹(PG), Heloysa M. C. Andrade^{1,2}(PQ), Artur J. S. Mascarenhas^{1,2}, (PQ). *mauriciobquimica@gmail.com

Palavras Chave: Síntese, ferrierita, , etilenodiamina, desidratação, acroleína.

Introdução

O aproveitamento de glicerol proveniente da transesterificação de óleos vegetais por rotas catalíticas é uma alternativa promissora uma vez que agrega valor a produção de biodiesel. Os zeólitos têm sido aplicados como catalisadores ácidos na reação de desidratação do glicerol para a produção de acroleína. A depender da razão molar SiO₂/Al₂O₃, pode-se obter esses materiais com diferentes propriedades ácidas. Dentre os zeólitos mais ativos e seletivos para esta reação, destacamse o ZSM-5, MCM-22, Beta e ferrierita¹.

O zeólito ferrierita (FER) tem estrutura composta por canais com anéis de dez e seis membros intersectados perpendicularmente a canais com anéis de oito membros e pode ser sintetizado utilizando etilenodiamina como agente direcionador². Neste trabalho o zeólito ferrierita foi sintetizado em diferentes razões SiO₂/Al₂O₃ e avaliado na reação de desidratação de glicerol a acroleína em fase vapor.


Resultados e Discussão

A partir dos difratogramas de raio X apresentados na Figura 1 pode-se observar picos característicos da topologia ferrierita. Os picos são mais intensos e definidos para o zeólito com razão $SiO_2/Al_2O_3=30$ do que para o material com razão $SiO_2/Al_2O_3=15$. Sugere-se que o material $SiO_2/Al_2O_3=30$ tem maior cristalinidade quando obtido nestas condições de síntese.

Os materiais foram caracterizados por análise elementar (EDX), TPD-NH $_3$ para quantificação dos sítios ácidos e propriedades texturais por adsorção de N $_2$. Os dados são apresentados na Tabela 1, juntamente com os resultados de conversão de glicerol ($\chi_{glicerol}$) e seletividade a acroleína ($S_{acroleína}$) após 2 h de reação.

As maiores conversões de glicerol e seletividade a acroleína nas primeiras 2 h de reação foram observadas para a amostra com menor razão SiO₂/Al₂O₃, sugerindo que existe uma correlação

entre a densidade de sítios ácidos totais e o desempenho do catalisador nesta reação.

Figura 1. Difratograma de raios X do zeólito ferrierita nas razões $SiO_2/AI_2O_3 = 15$ e 30.

Os catalisadores sofrem uma rápida desativação nas primeiras 10 h de reação por formação de coque, mas podem ser regenerados, com recuperação total da atividade, por tratamento em atmosfera oxidante.

Tabela 1. Propriedades físico-químicas dos catalisadores e desempenho catalítico após 2 h de reação a 320°C (W/F= 41,6 g s mmol⁻¹).

Catalisador	S _{BET} (m ² /g)	S. A. ^a (mmol/g)	χglicerol (%)	S _{acroleína} (%)
H-FER(15)	210	1,05	53,0	52,9
H-FER(30)	304	0,86	36,9	5,3

^a Densidade de sítios ácidos

Conclusões

O zeólito ferrierita é ativo e seletivo na desidratação de glicerol a acroleína em fase vapor. O desempenho catalítico reflete a densidade de sítios ácidos e, portanto, o efeito da razão SiO₂/Al₂O₃.

Agradecimentos

M. B. dos Santos agradece ao CNPQ pela bolsa.

I¹ Universidade Federal da Bahia – UFBA, Laboratório de Catálise e Materiais, Departamento de Química Geral e Inorgânica, Instituto de Química, Salvador – BA.

² Instituto Nacional de Ciência e Tecnologia em Energia e Ambiente (INCT – E&A), Salvador – BA

Vaughan, P. A. Acta Cryst. 1966, 21, 983-990.

² Carriço, C.S., Cruz, F.T. Santos, Pastore, M.B. H.O. Andrade, H.M.C. Mascarenhas, A.J.S. *Micro. and Meso. Materials.* **2013**,v. 181 p. 74 82.