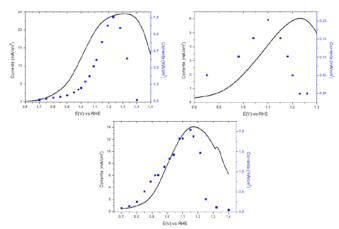
Efeito da modificação das nanopartículas de Au com Sn e Bi para a eletrooxidação do glicerol em meio alcalino.

*Karina Barrezzi¹ (PG), Antonio C. D. Ângelo¹ (PQ), Cássio L. F. de Oliveira² (PQ) ¹Universidade Estadual Paulista - UNESP, ²Fundação Paulista de Tecnologia e Educação – Unilins (PQ)

*barrezzi@fc.unesp.br

Palavras Chave: Au, nanopartículas, eletrooxidação, glicerol, Sn, Bi

Introdução


A oxidação de poliálcoois como o glicerol atrai atenção de laboratórios de estudos eletroquímicos pela possibilidade de se obter energia elétrica a partir da oxidação completa com transferência de um razoável número de elétrons por molécula do combustível¹. Porém, a oxidação deste composto ainda não alcancou desenvolvimento desejável e, frequentemente, a eletrooxidação se limita a algum intermediário de oxidação que não o CO2. Neste contexto, ainda buscam-se materiais eletródicos que aumentem a eficiência da reação eletroquímica. O material Au/C tem demontrado bons resultados ². Contudo, buscadesempenho melhorar 0 através desenvolvimento de materiais que tenham o Au como base. O objetivo deste trabalho é apresentar resultados preliminares da atividade eletroquímica das ligas AuSn/C e Au2Bi/C frente a reação de oxidação do glicerol em meio alcalino.

Resultados e Discussão

Os parâmetros eletroquímicos foram obtidos através da técnica potenciodinâmica de voltametria cíclica (VC) e pela técnica de estado estacionário de cronoamperometria (CR) . Os resultados obtidos (Tabela 1), mostram que o material AuSn/C têm melhor desempenho frente ao $\text{Au}_2\text{Bi/C}$ e Au/C. Os potenciais de início de oxidação dos materiais eletródicos no eletrólito puro foram 1,1V, 0,4V e 0,9V para AuSn/C, $\text{Au}_2\text{Bi/C}$ e Au/C. Com base apenas nesses resultados se esperaria um melhor desempenho do material $\text{Au}_2\text{Bi/C}$ caso o mecanismo bifuncional fosse atuante. No entanto,

observou-se que o melhor desempenho foi para o

material AuSn/C, o que leva a supor algum tipo de

Figura1: Curvas potenciodinâmicas para reação de eletrooxidação do glicerol sobre os materiais AuSn/C, Au₂Bi/C e Au/C respectivamente em meio alcalino KOH 0,2M.

Tabela 1. Parâmetros Eletroquímicos da oxidação do glicerol em meio alcalino para AuSn/C, Au₂Bi/C e Au/C.

Materiais	Voltametria Cíclica			Cronoaperometria	
	OP (V)	lp (mA/cm ²)	Ep (vs.ERH)	lp (mA/cm ²)	Ep (vs.ERH)
AuSn/C	0,78	24,5	1,31	7,55	1,23
Au ₂ Bi/C	0,85	6,0	1,23	0,20	1,10
Au/C	0,82	14,0	1,17	2,04	1,15

Conclusões

Através dos resultados, conclui-se que o material modificado por Sn apresenta melhor atividade em relação ao Au₂Bi/C e Au/C e que esse melhor desempenho pode ser devido ao efeito eletrônico.

Agradecimentos

CAPES e POSMAT

¹Gomes; J.F.; Tremilioso-Filho; G. Electrocatalysis, v.2, p.96-105, 2011.

efeito eletrônico.

²Hutchings; J.G. Catalysis Today, v.100, p. 55-61, 2005.