Determinação dos Óleos de Fritura para Produção de Biodiesel

Roberto J. Tibúrcio P. Júnior¹(IC)^{*}; Eduardo Gusmão¹(IC), Alexandre Schuler (PQ) *roberto.jun@ufpe.br*

1- Laboratório de Cromatografia Instrumental, Departamento de Engenharia Química - UFPE, Av. prof. Artur de Sá, S/N Cidade Universitária, Recife-PE - CEP 50740-521.

Palavras Chave: óleo, biodiesel, catálise homogênea.

Introdução

Como um possível substituto do petróleo, o óleo vegetal que é usado na fritura de alimentos pode ser reutilizado para fabricação de biodiesel e sabão.

O biodiesel é um substituto natural do diesel de petróleo e pode ser produzido a partir de fontes renováveis como óleos vegetais, gorduras animais e óleos utilizados para cocção de alimentos (fritura)¹.. A utilização de óleos residuais na produção de biodiesel traz vários benefícios, não apenas econômicos, mas relaciona aspectos mais relevantes como o ambiental e o social.

O objetivo do presente trabalho foi determinar qual o melhor tipo de óleo para produção de biodiesel via rota homogênea, de modo a poder contribuir para minimizar o seu descarte no meio-ambiente.

Resultados e Discussão

O LCI (Laboratório de Cromatografia Instrumental da UFPE) recebe óleo residual de empresas e pessoas físicas, a fim de evitar que tal contaminante caia no meio-ambiente. (Tabela 1 abaixo).

Tabela 1. Esquema Indicando Origem e Características Gerais das Amostras

G	tiais uas Ailiustias	
	Origem	Características
	Sadia S. A.	Coloração amarelo-escuro,
	Chefe Platão	contendo muitas impurezas
	Restaurante	(borra e sobrenadante)
_	Domiciliar	visíveis.
	Baracho	
	Restaurante	

Como as amostras possuíam muitas impurezas foi realizada uma filtração a vácuo com papel de filtro de 2,7 µm. Em seguida removeu-se a água residual das amostras aquecendo por 120 minutos, e as amostras foram novamente filtradas. A determinação de AGL (ácidos graxos livres) foi feita através de titulação e pela seguinte equação²:

AGL % = (Vx . 100 . F) / Pa

Onde: AGL = ácido graxo livre; Vx = volume da solução de NaOH (0,1 mol/L) gasto na titulação em mL; Pa = peso da amostra de óleo, em gramas; F = fator que corresponde ao ácido graxo majoritário; para o óleo de soja, por exemplo, este fator corresponde ao decimiliequivalente-grama do ácido oléico (F = 0,0282).

Os teores de AGL de todas as amostras ficaram abaixo de 0.5%.

37ª Reunião Anual da Sociedade Brasileira de Química

Em seguida foi realizada a transesterificação de cada amostra. Foi empregada a razão molar de 1:5 (óleo/metanol), pois foi a que apresentou melhor rendimento usando uma amostra de controle (óleo de fritura produzido no laboratório), conforme Tabela 2 abaixo.

Tabela 2: Rendimento das transesterificações de acordo com a proporção óleo/metanol.

Proporção	Rendimento	ento MM do		
óleo/metanol (mol/mol)	(%)	Biocombustível		
1:12	67,2	970		
1:9	90,8	1311		
1:6	93,6	1351		
1:5	98,8	1282		
1:3	Não houve conversão			

Através da verificação de conversão dos ésteres metílicos por cromatografia gasosa se pode determinar o rendimento de cada amostra, Tabela 3.

Tabela 3: Rendimento das transesterificações de acordo com a Origem.

Origem	Massa	Rendimento	
Origeni	Óleo de soja	Biodiesel	(%)
Sadia S. A.	20,5	90,2	93,6
Chefe Platão Restaurante	20,4	88,7	90,5
Domiciliar	20,2	85,3	88,2
Baracho Restaurante	20,8	86,8	91,2
		MÉDIA	90,9

Conclusões

Os melhores óleos de fritura para serem usados para a produção de biodiesel via rota homogênea, são os industriais com médio uso do óleo.

Agradecimentos

Os autores agradecem à PROEXT-UFPE, à Coletóleo Pernambucano e à QualiLub Consultoria.

¹RAMOS, L. P.; KNOTHE, G.; VAN GERPEN, J. & KRAHL, J. Manual de Biodiesel. 1. ed. São Paulo: Edgard Blücher, 2006.

² CANAKCI, M., GERPEN, J. Van. The performance and emissions of a diesel engine fueled with biodiesel from yellow grease and soybean oil.Transactions ASAE. 44: 1429, 2001.