ESTUDO TERMODINÂMICO E CINÉTICO DA QUITOSANA COMO ADSORVENTE DE CROMO.

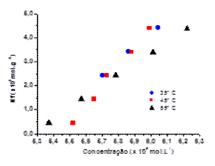
Larissa Thuany Xavier e Silva¹(IC); Lucimar Pacheco G. da Rocha¹(PQ); Fernanda S. Carvalho dos Anjos^{1*}(PQ).

Palavras Chave: Quitosana, Cromo, Processo de adsorção.

Introdução

A guitosana é obtida através da reação, em meio alcalino, da desacetilação da quitina. Além de possuir baixa toxicidade, é biodegradável e insolúvel em meios aquosos, básicos, sendo completamente solúvel em alguns ácidos orgânicos, é um bom adsorvente para remoção de metais pesados¹. O cromo é um metal pesado encontrado na natureza em rochas, animais, plantas e solos. Os compostos de cromo (VI), por apresentarem características altamente oxidantes, são muito nocivos à saúde, quando penetram nas membranas biológicas danificando as estruturas celulares². Com base na aplicabilidade do processo de adsorção e conhecimentos prévios através estudos cinéticos e termodinâmicos analisou o grau de adsorção do cromo pela quitosana.

Resultados e Discussão


O estudo da adsorção do cromo em quitosana foi realizado utilizando a quitosana em pó. Foram preparados padrões de $K_2Cr_2O_7$, que foram utilizados para os experimentos de adsorção utilizando um volume determinado da solução e uma quantidade do adsorvente, levados a uma incubadora com agitação. A quantidade de cromo antes e depois da adsorção pode ser determinada utilizando um espectrofotômetro de absorção molecular pelo método da difenilcarbazida. Os dados termodinâmicos e cinéticos são obtidos variando a concentração da solução de cromo, a temperatura e o tempo das isotermas utilizadas.

Para o estudo termodinâmico, os dados foram obtidos a partir das isotermas de adsorção foram reajustados de acordo com modelo de adsorção de Langmuir mostrado na equação a seguir e o modelo de Freundlish. No modelo de Langmuir, é adotado que o metal forma uma monocamada relativamente regular sobre a superfície do adsorvente.

$$C_f/N_f = C_f/N_s + 1/b.N^s$$

Foi traçado um gráfico Nf x Cf onde o coeficiente angular e linear da linearização da equação de Langmuir (figura 01), para cada temperatura estudada, forneceram os valores de 1/Ns e 1/Ns.b respectivamente indicando que a superfície da quitosana é progressivamente saturada por íons de cromo (tabela 01).

37ª Reunião Anual da Sociedade Brasileira de Química

Figura 1. Isotermas de adsorção de íons cromo por quitosana, com as temperaturas a 35°, 45° e 55° C.

Tabela 1. Adsorção e os dados sobre as interações termoquímicas cromo-quitosana em meio aquoso.

	Temperatura	N ^s /10 ⁻⁵	b/10 ³
	(°C)	(mol/g)	(L/g)
•	35	0,163	-188,19
	45	0,119	-183,08
	55	0,218	-190,04

Para determinar a ordem de adsorção metalquitosana foi traçado os gráficos referentes ao pseudo-primeira ordem e pseudo-segunda ordem e verificou-se a linearidade da curva obtida. Com os dados cinéticos notou-se que a adsorção da quitosana é de pseudo-segunda ordem em relação ao metal cromo, pois o gráfico aponta uma grande linearidade com coeficiente de correlação em torno de 0,99.

Conclusões

No tratamento dos dados termodinâmicos foi possível notar uma melhor linearidade no modelo de Langmuir. Assim, a adsorção de metal forma uma monocamada relativamente regular sobre a superfície do adsorvente. Com os dados cinéticos notou-se que a adsorção da quitosana é de pseudo-segunda ordem em relação ao metal cromo.

Agradecimentos

Aos recursos financeiros recebidos pela FAPESB à bolsa de iniciação científica a aluna Silva, L.T.X.

¹Universidade Federal do Vale do São Francisco. Email: fernanda.anjos@univasf.edu.br.

¹ Varma, A. J., Deshpande, S. V., Kennedy, J. F. Carbohydr. Polym. p.55 e

² Silva, R. C., et al. Adsorção de Cr(VI) em esferas reticuladas de quitosana. Quim. Nova, Vol. 33, No. 4, p. 880-884, 2010.