Síntese de CaAl₁₂O₁₉ e SrAl₁₂O₁₉ via precursor de ácido cítrico empregados na combustão catalítica do metano.

Leandro M. Novaes^{1*} (IC), Fernanda L. C. de Sousa¹ (IC), João B. L. de Oliveira¹ (PQ).

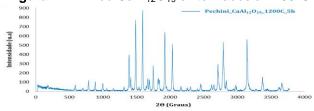
Palavras Chave: Combustão, Metano, Hexaaluminatos, Método Pechini, Gás Natural.

Introdução

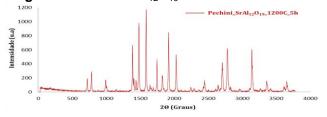
Esta pesquisa foi um estudo de metodologias alternativas relacionadas ao melhoramento da combustão de metano, em busca de avanços na atividade, bem como a diminuição de seus impactos ambientais. O gás natural é uma mistura de hidrocarbonetos, constituído principalmente de metano (>85%).

O catalisador tem a função clássica de acelerar a ocorrência de uma reação química. Os catalisadores hexaaluminatos apresentam alta seletividade com o metano, alta estabilidade térmica, química e mecânica durante a reação e diminuem a temperatura de ignição da reação.

A síntese dos hexaaluminatos se deu através do Método Pechini, [Pechini, 1967], também chamado de método dos precursores poliméricos.

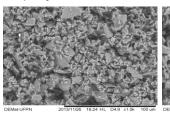

Para o processo de síntese foram utilizados os seguintes reagentes: ácido cítrico $(C_6H_8O_7)$; nitrato de alumínio $(AI(NO_3)_3.9H_2O)$; nitrato de cálcio $(Ca(NO_3)_2.3H_2O)$; nitrato de estrôncio $(Sr(NO_3)_2.6H_2O)$ e etilenoglicol $(C_2H_4(OH)_2)$, todos de elevada pureza.

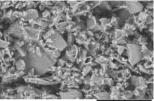
Os pós nanométricos obtidos foram caracterizados por Difração de Raios-X (DRX), por Microscopia eletrônica de Varredura (MEV) e EDS (Energy Dispersive X-ray Spectroscopy).


Resultados e Discussão

Foram realizadas as análises de DRX, MEV e EDS na caracterização dos pós nanoestruturados.

Figura 1. DRX do CaAl₁₂O₁₉ sinterizados a 1200°C.




Figura 2. DRX do SrAl₁₂O₁₉ sinterizados a 1200°C.

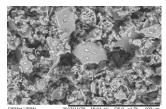

37ª Reunião Anual da Sociedade Brasileira de Química

Figura 3. MEV da estrutura do CaAI₁₂O₁₉ para ampliações de 1000x e 2000x.

Figura 4. MEV da estrutura do SrAl₁₂O₁₉ para ampliações de 1000x e 2000x.

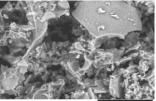


Tabela 1. EDS dos átomos presentes no CaAl₁₂O₁₉.

Element	Weight %	Weight % σ	Atomic %
Oxygen	55.726	0.726	69.044
Aluminum	37.733	0.635	27.721
Calcium	6.540	0.273	3.235

Tabela 2. EDS dos átomos presentes no SrAl₁₂O₁₉.

Element	Weight %	Weight % σ	Atomic %
Oxygen	48.842	3.960	79.796
Aluminum	45.663	3.425	18.486
Strontium	5.679	0.839	1.694

Conclusões

A combustão catalisada do metano se mostrou bastante promissora, tendo em vista que esses catalisadores reduzem a temperatura de ignição da reação, os quais possuem alta taxa de oxidação, alta seletividade com o CH₄, dentre outros fatores que são importantes para a combustão do metano.

Agradecimentos

Ao financiamento do PRH-PB 222.

¹Universidade Federal do Rio Grande do Norte, Instituto de Química, Av. Senador Salgado Filho, n° 3000, Lagoa Nova, Campus Universitário, Natal/RN, CEP: 59078-970. *martins.ufrn@gmail.com

FAROU, M.H.E.; Método Pechini para preparação de nanopartículas. ISSN 2175-3067, 2011.

²PECHINI, M., Us Patent 3.330.697,1967.

³ LEE, J.D. Química Inorgânica. Quarta Edição, SP,1997.