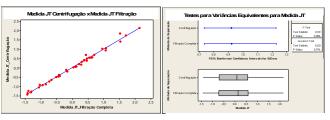
Otimização e validação de método para determinação de índice de refração do soro cúprico para identificação de adulteração em leite fluido por adição de água

Patrícia S. Rezende (PQ)*, Geraldo P. Carmo (PQ), Eduardo G. Esteves (PQ). clicpatricia@yahoo.com.br

Laboratório de Físico-Química de Produtos de Origem Animal – POA/PL, Laboratório Nacional Agropecuário do Estado de Minas Gerais – LANAGRO/MG, Avenida Rômulo Joviano, s/n, Pedro Leopoldo, MG, Caixa Postal 35 e 50, CEP 33600-000.

Palavras Chave: qualidade do leite, refratometria, fraude.

Introdução


Atualmente, a avaliação da qualidade do leite quanto à adição de água é realizada pela determinação de sua densidade e índice crioscópico. Porém, a adição de solutos como cloreto de sódio, uréia, maltodextrina e citrato de sódio, dentre outros, são capazes de corrigir os valores desses parâmetros de análise, dissimulando a identificação da fraude.

O método de determinação do índice de refração do soro cúprico (IRSC) em leite é citado pelo Regulamento da Inspeção Industrial e Sanitária de Produtos de Origem Animal (RIISPOA), Decreto 30691/1952, como um método de precisão na identificação da adição de água, já que, esta, por possuir um índice de refração (IR) de 14,5° Zeiss a 20°C, reduz o IR do leite. Assim, um valor de IRSC inferior a 37 °Zeiss a 20°C é indicativo da adição de água ao leite. O método citado foi descrito em 1915, trata-se de um método de fácil execução, porém moroso, devido à utilização de filtração como forma de separação do precipitado e do soro.

Este trabalho descreve os procedimentos de otimização e validação do método de ensaio de determinação do IRSC a 20 °C em leite fluido, substituindo-se a etapa de filtração por centrifugação, tornando o método mais simples, rápido e robusto. O método otimizado confere celeridade e amplia a capacidade analítica, sendo, portanto, de grande utilidade na inibição de fraude por adição de água ao leite.

Resultados e Discussão

Em relação ao método original de determinação de IRSC em leite, no método proposto foram otimizados os volumes de leite e de solução de sulfato cúprico empregados no preparo das amostras, bem como substituiu-se a etapa de filtração por centrifugação em condições ótimas de tempo e rotação. Submetendo-se o método original e o otimizado à comparação, verificou-se a equivalência estatística entre eles na determinação do IRSC em leite (P>0,05) (Tabela 1 e Figura 1).

Figura 1. Regressão e comparação de variâncias para os valores de IRSC obtidos pelo método de referência (filtração) e pelo método otimizado (centrifugação).

Tabela 1. Tabela ANOVA de comparação dos dados obtidos pelo método de referência e pelo método proposto.

Fonte	GL	Seq SS	Adj SS	Adj MS	F	Р
Amostra	21	42,7301	42,7301	2,0348	91,23	0,000
Método	1	0,0057	0,0057	0,0057	0,26	0,618
Erro	21	0,4684	0,4684	0,0223		
Total	43	43,2041				
S = 0,149343		R-Sq = 98,92%		R-Sq(adj) = 97,78%		

A validação do método proposto foi realizada, avaliando-se os seguintes parâmetros de desempenho: veracidade, precisão (em nível de repetitividade e precisão intermediária), robustez e incerteza expandida de medição.

Verificou-se que o método proposto apresenta precisão satisfatória em nível de repetitividade (0,025 = ~ 0,07% das medidas de IRSC de leite fluido) e de precisão intermediária (0,133 = ~ 0,4% das medidas de IR de soro cúprico de leite fluido).

A robustez foi avaliada conforme Teste de Youden, sendo que o método mostrou-se robusto nas condições perante os sete fatores testados.

Conclusões

As alterações realizadas no método proposto proporcionaram resultados de IRSC equivalentes ao do método original, obtendo-se também ampliação da capacidade analítica, redução no tempo de preparo das amostras, redução no consumo de reagentes, de amostra, e dos resíduos de análise gerados.

Agradecimentos

CNPq

¹ Brasil. Decreto n° 30.691 de 29 de março de 1952. **1952**.

 $^{^2}$ Leffman, H. Analysis of milk and milk products $.4^{\rm a}$ ed. Filadélfia: P. Blakiston's Son & Co. 1915.

³IAL. *Métodos físico-químicos para análise de alimentos.* 4ª ed. Brasília: IAL. **2005**.

⁴INMETRO. Orientações sobre validação de métodos e ensaios químicos. **2008**.