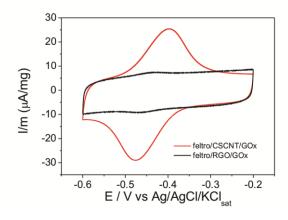
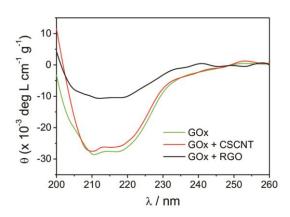
Microfibras de carbono decoradas com nanotubos de carbono do tipo "cup-stacked" e/ou óxido de grafeno reduzido para transferência eletrônica direta da glicose oxidase.

Vinicius R. Gonçales^{1*} (PQ), Rafael N.P. Colombo¹ (IC), Marco A.O.S. Minadeo¹ (PG), Elaine Y. Matsubara² (PQ), José M. Rosolén² (PQ), Susana I. Córdoba de Torresi¹ (PQ). *vromero@iq.usp.br


- 1) IQ, USP, Av. Prof. Lineu Prestes, 748. CEP: 05513-970. São Paulo, SP, Brasil.
- 2) FFCLRP, USP, Av. Bandeirantes, 3900. CEP: 14040-901. Ribeirão Preto, SP, Brasil.

Palavras Chave: transferência eletrônica direta, glicose oxidase, nanotubos de carbono, grafeno, biossensor

Introdução


A terceira geração de biossensores eletroquímicos de glicose é capaz de promover a transferência eletrônica direta entre a glicose oxidase (GOx) e o eletrodo. Essa situação pode melhorar aspectos como a seletividade e evitar problemas relacionados à instabilidade de mediadores.¹

Resultados e Discussão

Figura 1. Transferência eletrônica direta da GOx imobilizada sobre o feltro/CSCNT (vermelho) e feltro/RGO (preto).

A transferência eletrônica direta da GOx foi conduzida sobre um feltro formado por microfibras de carbono decoradas com nanotubos de carbono do tipo "cup-stacked" (CSCNT) ou folhas de óxido de grafeno reduzido (RGO). A Figura 1 mostra que tanto o CSCNT quanto o RGO são eficientes no acesso ao grupo FAD da GOx., apresentando diferenças de intensidade devido ao número de regiões de borda presentes em cada caso. O modelo de Laviron foi empregado para o cálculo das constantes heterogêneas de transferência s⁻¹ para eletrônica. obtendo-se ks = 0.7 feltro/CSCNT/GOx e 2,7 s⁻¹ para feltro/RGO/GOx. A influência das distintas nanoestruturas de carbono no desempenho obtido pode ser analisada através de experimentos de dicroísmo circular, conforme relatado na Figura 2.

Figura 2. Espectros de dicroísmo circular obtidos com a GOx nativa (verde) e com a enzima na presença de CSCNT (vermelho) ou RGO (preto).

As bandas em 210 e 220 nm mostram que a estrutura nativa da GOx é rica em α-hélices, o que blinda o sítio ativo enzimático. A presença dos CSCNT ocasiona um deslocamento das bandas e uma diminuição de sua intensidade, indicando que o grupo FAD está mais acessível, mas ainda consideravelmente protegido pela estrutura proteica. Já a interação entre a GOx e o RGO gera um espectro centralizado em uma única banda a 215 nm, o que é característico de uma estrutura rica em folhas-β. Essa mudança de conformação faz com que o sítio ativo fique mais exposto, justificando a maior cinética de transferência eletrônica.

Conclusões

O estudo uniu os resultados eletroquímicos com as mudanças de conformação proteica observadas. Resultados também foram obtidos com um feltro decorado simultaneamente com CSCNT e RGO, possibilitando verificar como a interação eletrônica existente entre CSCNT e RGO afetam o valor de ks.

Agradecimentos

FAPESP (11/15159-0 e 09/53199-3), INCTBio

¹ Yang, W.; Ratinac, K. R.; Ringer, S. P.; Thordarson, P.; Gooding, J. J.; Braet, F. *Angew. Chem. Int. Ed.* **2010**, 49, 2114.