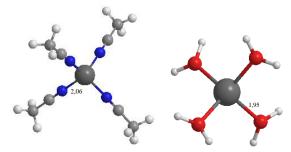
Revisando a Energia Livre de Solvatação do Íon Li⁺ em Água, Acetonitrila e DMSO pelo Modelo *Cluster-Continuum*

Nathália Fernandes Carvalho (PG)1*, Josefredo Rodriguez Pliego Jr. (PQ)1

Introdução

A energia livre de solvatação é o parâmetro mais importante para descrever a interação entre o soluto e o solvente para reações em solução. Para íons isolados, a obtenção deste parâmetro é muito difícil, uma vez que não se conseque medir o equilíbrio de partição do soluto entre as fases gasosa e solução. Por outro lado, solvatação de pares de íons pode ser medida, e com o conhecimento do valor de apenas um íon, pode-se obter uma escala de solvatação para todos os demais. As energias livres de solvatação absolutas do cátion lítio em água, metanol, acetonitrila e dimetilsulfóxido foram determinadas em estudos recentes usando o modelo *cluster-continuum*¹⁻³. Entretanto, em um trabalho recente sobre solvatação em metanol,1 observou-se que a energia livre de solvatação do Li⁺ é muito sensível ao nível de cálculo e as bases 6-311+G(2df,2p) usadas em trabalhos anteriores em água, acetonitrila e DMSO não são suficientes para se obter energias acuradas. Por isto, neste trabalho estendemos as bases até a qualidade def2-QZVPP de Ahlrichs e colaboradores, aumentadas com funções difusas sp sobre os átomos de nitrogênio, oxigênio e enxofre. Foram considerados clusters de Li⁺ com quatro moléculas de cada um dos solventes estudados.


Resultados e Discussão

Os clusters foram otimizados em nível CPCM/ X3LYP/DZVP tiveram suas freqüências е vibracionais calculadas no mesmo nível. Cálculos no ponto em níveis MP2/def2-TZVPP, MP2/def2-QZVPP, MP2/DZVP e MP4/DZVP também foram conduzidos. Com isso e, utilizando-se Aproximação da Aditividade, derivou-se a energia eletrônica em nível MP4/def2-QZVPP. A solvatação foi incluída por meio dos modelos PCM e SMD. Os programas Firefly e Gamess foram utilizados neste trabalho. No modelo, considera-se que algumas poucas moléculas de solvente estão fortemente ligadas a um íon central, de forma que o processo de solvatação pode ser considerado uma reação química. Deste modo, a energia livre de solvatação absoluta do íon é dada por:

$$\Delta G^*_{solv,n}(A^{\pm}) = \Delta G^*_{cluster}(A^{\pm}(S)_n) + \Delta G^*_{solv}(A^{\pm}(S)_n) - n\Delta G^*_{solv}(S) - nRTln[S]$$

sendo $\Delta G^*_{cluster}$ $(A^\pm(S)_n)$ a energia livre de formação do cluster em fase gasosa, ΔG^*_{solv} $(A^\pm(S)_n)$ a energia livre de solvatação do cluster, ΔG^*_{solv} (S) a energia livre de solvatação do solvente e o último termo está relacionado à concentração molar do solvente.

Na Figura 1, têm-se as geometrias dos clusters obtidos e na Tabela 1 os dados calculados neste trabalho.

Figura 1. Geometrias otimizadas em nível CPCM/ X3LYP/ /DZVP dos clusters de Li⁺ com quatro moléculas de acetonitrila e água, respectivamente.

Tabela 1. Energias de formação dos clusters e energia livre de solvatação do Li+ nos solventes estudados.^a

Clusters	$\Delta \mathbf{G}^{^*}_{\;clus}$	∆G [*] _{solv} (Li ⁺) calculado	∆G [*] _{solv} (Li ⁺) literatura
Li-(H ₂ O) ₄	-70,09	-106,74	-115,4 ^b
Li-(CH ₃ CN) ₄ Li-	-90,38	-116,32	-119,4 ^b
[(CH ₃) ₂ SO] ₄	-104,06	-	-135,5 ^c

^a Unidades em kcal.mol⁻¹ ^b Dados da ref. 2 ^c Dados da ref. 3

Conclusões

Nosso valor de $\Delta G^*_{solv}(Li^+)$ em água tem uma diferença de 8,7 kcal mol $^-1$ com o valor reportado anteriormente por Pliego 2 de -115,4 kcal.mol $^-1$, mostrando a falha da base 6-311+G(2df,2p). O valor para o $\Delta G^*_{solv}(Li^+)$ em acetonitrila, por outro lado, tem uma diferença bem menor 2 , de 3,1 kcal mol $^-1$. O cálculo para o $\Delta G^*_{solv}(Li^+)$ em DMSO está em andamento.

Agradecimentos

À FAPEMIG, ao CNPq e à CAPES pelo suporte.

^{*}nathaliaufsj@yahoo.com.br

¹ Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160, São João del-Rei, MG Palavras Chave: solvatação, energia livre, Li⁺, ab initio

¹ Pliego, J.R., Jr.; Miguel, E.L.M., *J. Phys. Chem. B.* **2013**, *117*, 5129.

² Pliego, J.R.,Jr. XXXIII RASBQ, TEO-041, 2010.

³ Westphal, E.; Pliego, J.R.,Jr. *J.Chem. Phys.*, **2005**, 123, 074508-1