Estudo da Regioquímica da Reação do Bloco Precursor Enaminodicetona Frente à Fenilhidrazina: Síntese de Pirazóis.

Thiago F. de Souza¹(PG), Michael J. Vieira da Silva¹(PG), Davana S. Gonçalves¹(PG), Gisele de F. G. Bandoch¹(PQ), Ernani A. Basso¹(PQ), Fernanda Andréia Rosa¹(PQ)*.

*farosa@uem.br

Palavras Chave: enaminodicetonas, ciclocondensação, regioquímica, pirazol.

Introdução

Nas últimas décadas, houve um aumento no número de pesquisas relacionadas à obtenção sintética de compostos heterocíclicos farmacologicamente ativos, com destaque compostos contendo núcleos pirazolínicos, os quais atividades descrito na literatura com antipirético^{1,2} antiinflamatória, analgésico, antitumoral³. Entre as principais reações empregadas para obtenção de núcleos pirazolínicos, a reação de ciclocondensação, destaca-se utilizando-se um bloco precursor poli-funcionalizado, no qual os compostos β-enaminodicetonas e seus derivados são amplamente empregados⁴. No entanto, um dos problemas, é a possível formação de produtos regioisômeros. Sendo assim, este trabalho tem como obietivo, o estudo da regioquímica da reação de ciclocondensação do bloco precursor 3-(4-Fluorbenzoil)-4-dimetilamino-2oxo-3-butenoato de etila⁵ (1) frente à fenilhidrazina (Esquema 1), utilizando diferentes condições reacionais.

Resultados e Discussão

De acordo com a literatura, a reação de ciclocondensação do bloco precursor β -enaminodicetona (1) com fenilhidrazina leva a mistura dos regioisômeros $\bf A$ e $\bf B$ na proporção de 3:1 (**Esquema 1**) 4 .

Esquema 1.

Com o intuito de obter uma síntese regioespecífica, diferentes condições reacionais foram testadas (**Tabela 1**). Observa-se que a temperatura reacional não influenciou na regioquímica, obtendo-se a 37º Reunião Anual da Sociedade Brasileira de Química

mesma proporção de regioisômeros **A** e **B** (Entrada 1 e 2 – Tabela 1). Também, foi observado que a utilização de catálise ácida, o ácido de Lewis BF₃.MeOH (Entrada 3) não influenciou essa proporção. No entanto, os ácidos próticos empregados modificaram a regioquímica da reação, aumentando a proporção do regioisômero **B** (Entrada 4 e 5 – Tabela 1). Quando foi utilizado líquido iônico [BMIM]BF₄ como solvente, obteve-se mistura equivalente dos regioisômeros (Entrada 6 – Tabela 1).

Tabela 1. Condições reacionais e proporção dos regioisômeros formados na reação de ciclocondensação.

Entrada-	i			Resultados (%)	
	Solvente	Temp.(°C)	Cat.	Α	В
1	EtOH	refluxo	-	75	25
2	EtOH	t.a.	-	75	25
3	EtOH	t.a.	BF_3	74	26
4	EtOH	t.a.	HCOOH	38	62
5	EtOH	t.a.	TsOH	55	45
6	[BMIM]BF ₄	t.a.	-	50	50

*Obtido por análise de RMN de 1H em CDCl3;

Conclusões

Concluiu-se que a utilização de catalisador ácido prótico proporcionou alterações na regioquímica da reação, aumentando a proporção do regioisômero **B**. Observou-se também que a natureza do ácido (força e estrutura) tem efeito na magnitude da proporção de **B** em relação a **A**. Tais resultados são relevantes do ponto de vista sintético, visto que metodologias com maior regioespecificídade são de grande valia para atividade farmacológica.

Agradecimentos

À CAPES, CNPq e Fundação Araucária pela concessão de bolsas de mestrado e iniciação científca.

¹Estereoquímica de Compostos Orgânicos e Docking Molecular (ECO), Departamento de Química (DQI), Universidade Estadual de Maringá, CEP 87.020-900, Maringá, PR, Brasil.

¹Behkit, A. A., Abdel-Azien, T., Bioorg. Med. Chem., 2004; 12; 1936. ²Selvam, C.; Jachak, S. m.; Thilagavathi, R.; Chakraborti, A. K. Bioorg. Med. Chem. Lett. 2005, 15, 1793.

³Zheng, Y. et al. Bioorg. Med. Chem. Lett. V. 23, p. 3523,2013.

⁴Rosa, F. A.; Machado, P.; Vargas, P. S.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. P.; *Thieme*; 2008; pp. 1673-1676.

⁵Rosa, F. A.; Rossato, M.; P. S.; Bonacorso, H. G.; Zanatta, N.; Martins, M. A. P.; *Thieme*; 2007; p. 3165-3169.