Reações de Suzuki e Formação de Ligação C-O Promovidas por um Novo Sistema Catalítico Metal-Celulose

Marcelo R. dos santos (PQ),^{1*} Guilherme B. C. Martins (PG),¹ Marcus V. R. Rodrigues (IC),¹ Renata R. Sucupira (IC),¹ Luisa Meneghetti (IC),¹ Adriano L. Monteiro (PQ)² e Paulo A. Z. Suarez (PQ)¹

*marcelotigre@gmail.com

Palavras Chave: Celulose modificada, Paládio, Níquel, Cobre, Suzuki, ligação C-O.

Introdução

O Principal desafio da catálise moderna é a obtenção de processos ambientalmente amigáveis, utilizando recursos sustentáveis aliados a sistemas catalíticos eficientes. Nesse sentido, biopolímeros são extremamente atrativos e podem ser utilizados como suportes para centros catalíticos de metais de transição e aplicações em diversas reações.

A celulose é o biopolímero mais comum e seus derivados são fabricados em escala industrial e aplicados em revestimentos, filmes ópticos, produtos farmacêuticos, alimentos e cosméticos. Nesse sentido, planejamos a preparação e aplicação de um novo sistema catalítico metalcelulose para aplicação em reações de Suzuki e formação de ligação C-O, ambas com grande importância na síntese de fármacos, produtos naturais e de novos materiais.

Resultados e Discussão

Os complexos metálicos foram preparados pelo tratamento de 1 mmol dos correspondentes acetatos metálicos (Pd(OAc)₂, Ni(OAc)₂, Cu(OAc)₂), com 4 mmol do carboxilato de celulose em uma mistura de metanol/acetonitrila (Esquema 1).

Esquema 1. Preparação de complexos metálicos com a celulose modificada.

O Esquema 2 representa a realização dos testes de atividade catalítica para o acoplamento de Suzuki, utilizando paládio e níquel como centros metálicos. Os resultados encontram-se sumarizados na Tabela 1.

37ª Reunião Anual da Sociedade Brasileira de Química

Esquema 2. Reação de acoplamento de Suzuki.

Tabela 1. Resultados para a reação de Suzuki.						
Ent.	Metal	R	R'	Solvente	T (°C)	(%)
1	Pd	Н	OMe	H ₂ O/DMF	80	100
2	Pd	Н	OMe	MeOH	80	94
3	Pd	Н	OMe	H ₂ O/MeOH	80	93
4	Pd	Н	OMe	H ₂ O/DMF	30	92
5	Pd	OMe	Н	H ₂ O/DMF	30	100
6	Pd	Me	Н	H ₂ O/DMF	30	79
7	Ni	OMe	Н	PhMe	130	40
8	Ni	OMe	Н	dioxano	130	5

Também foram realizados testes de atividade catalítica utilizando cobre como centro metálico (CuCC) para mediar à formação de ligações C-O (Esquema 3). Os resultados obtidos evidenciam que este sistema catalítico é bastante promissor.

Esquema 3. Reação de formação de ligação C-O.

Conclusões

A preparação e aplicação do novo sistema catalítico com centros metálicos suportados em celulose modificada foi um sucesso, apresentando resultados expressivos relacionados à atividade catalítica do centro metálico.

Agradecimentos

CNPq, CAPES e FAPDF.

¹Laboratório de Materiais e Combustíveis, Instituto de Química - Universidade de Brasília, Brasília/DF.

²Laboratório de Catálise Molecular, Instituto de Química - Universidade Federal do Rio Grande do Sul, Porto alegre/RS.

¹ Reddy, K. R.; Kumar, N. S.; Reddy, P. S.; Sreedhar, B.; Kantam, M. L. J. Mol. Catal. A-Chem. **2006**, 252, 12.