A construção de moléculas com massa de modelar como ferramenta facilitadora na aprendizagem para graduandos de engenharia

Elaine C. Marques¹ (PQ)*, Garbas A. dos Santos Jr.¹ (PQ)

Universidade São Francisco, Rua Alexandre Rodrigues Barbosa, 45, Centro, Itatiba - SP.

* elainecrismarques @usf.edu.br

Palavras Chave: Ensino de Química, experimentação em Química, geometria molecular, modelos moleculares.

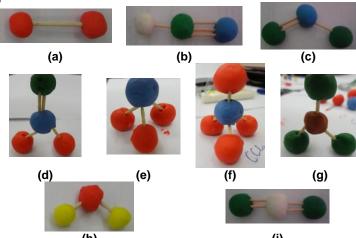
Introdução

A experimentação é uma forte aliada no processo de aprendizagem em química, pois se mostra motivadora, lúdica, e vinculada aos sentidos. Uma vez que nem todos os conteúdos de química podem ser abordados através de uma atividade prática de experimentação, uma alternativa é a experimentação por simulação, na qual, o aluno formula sua própria representação da realidade ¹.

A tridimensionalidade das moléculas é um conceito importante para o entendimento das propriedades que se originam das interações intermoleculares. Um conteúdo que é abordado anteriormente a este é o de geometria molecular, no qual, durante as aulas teóricas, se verifica a dificuldade de entendimento do assunto pelos alunos, devido, principalmente, à abstração do tema.

Neste trabalho é apresentado um exemplo prático de experimentação por simulação realizada na disciplina Química e Ciência dos Materiais, com cerca de 400 alunos dos semestres iniciais de cursos de Engenharia da Universidade São Francisco entre os anos letivos de 2012 e 2013, no qual se objetivou facilitar o aprendizado do conteúdo de geometria molecular através da confecção de moléculas tridimensionais com massa de modelar e palitos de dente.

Resultados e Discussão


Os alunos foram divididos em grupos de 5 alunos e cada grupo recebeu uma caixa de massa de modelar com cores diferentes e uma caixa de palitos de dentes. A cada grupo foi distribuído também um roteiro da prática e uma folha de avaliação. Os alunos, deveriam representar a estrutura de Lewis das moléculas H₂, HCN, H₂CO, NH₃, CCl₄, BF₃, SO₂, H₂O e CO₂ e na sequência, utilizar a massa de modelar no formato de esferas representando os átomos e os palitos de dentes simbolizando as ligações covalentes para representar as moléculas tridimensionalmente.

Verificou-se o aumento do interesse dos alunos durante a realização desta atividade lúdica. Alguns equívocos na montagem as moléculas já eram esperados e se concretizaram, sendo raros os grupos que montaram todas as moléculas como previsto pelo modelo de Repulsão dos Pares Eletrônicos da Camada de Valência (RPECV). Embora a grande maioria dos alunos tenha representado a estrutura de Lewis da maneira esperada, houve confusão na definição das geometrias das moléculas de amônia (NH₃), na qual o par de elétrons do nitrogênio não foi considerado e alguns grupos a classificaram como trigonal planar, e de tetracloreto de carbono (CCl₄), onde representaram os átomos de Cl dispostos na forma de cruz, sem considerar, portanto, o espaço tridimensional.

Após a montagem das moléculas, a presença do professor foi solicitada pelos alunos, para que estes pudessem responder à seguinte questão presente na folha de avaliação: "Quantas moléculas você não

conseguiu montar inicialmente? Apresente de forma sucinta o que é importante para a determinação da geometria molecular". Neste instante o papel do professor foi discutir com o grupo as bases científicas ou de senso comum utilizadas na montagem das moléculas, levando-os a concluir qual o melhor arranjo espacial para as mesmas. Este tipo de abordagem de ensino, baseada na construção do conhecimento, pode ser denominado de aprendizagem significativa, unindo a nova informação adquirida pelo aluno a conceitos preexistentes ².

A Figura 1 apresenta algumas das estruturas montadas pelos alunos.

Figura 1. Fotografias das moléculas modeladas pelos alunos: (a) H₂, (b) HCN, (c) SO₂ (d) H₂CO, (e) NH₃,(f) CCl₄, (g) BF₃, (h) H₂O e (i) CO₂.

Conclusões

Com a realização desta atividade pode-se concluir que atividades práticas de baixa complexidade desenvolvimento (para alunos de outras áreas de formação) se mostra um aliado importante no processo de construção da aprendizagem. Ainda deve-se ressaltar que os alunos que participaram desta atividade raramente têm consciência da importância de se ter a disciplina de Química no currículo, mas que, por serem alunos de cursos de engenharia, gostam de realizar práticas manuais, e são, portanto, contemplados com aquilo que gostam de fazer. Por mais lúdica que seja a atividade, devemos entendê-la como motivadora do pela química, que é de importância interesse fundamental no mundo tecnológico atual e que, precisa ser compreendida pelos estudantes para que estes possam se tornar cidadãos mais críticos e atuantes, como carece a sociedade.

Agradecimentos

À Universidade São Francisco.

¹ GIORDAN, M. Química Nova na Escola, 10, 43-49, 1999.

² GUIMARÃES, C.C. *Química Nova na Escola*, 31, 3, 198-202, 2009.