Atividade de argilas ativadas com H₃PMo₁₂O₄₀ e CF₃SO₃H para a síntese de mandelato de metila

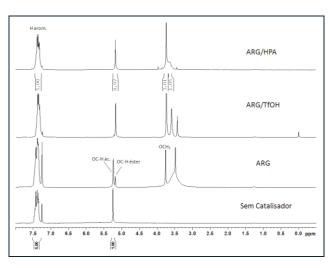
Taiana L. E. Pereira (IC)¹, Giselia A. Oliveira (PQ)², Rosane A. S. San Gil* (PQ)¹, Wilma A. Gonzalez (PQ)², Luis G. V. Gelves (PQ)¹

rsangil@iq.ufrj.br, taiana_emmanuel@hotmail.com

Palavras Chave: Montmorilonita, Superácidos, RMN, Catalise Heterogênea, Esterificação.

Introdução

sólidos com propriedades Vários ácidas superácidas vêm sendo utilizados em catálise heterogênea. Catalisadores sólidos a partir de argilas têm recebido ampla atenção, devido à busca por materiais que apresentem melhor atividade, seletividade e compatibilidade com o ambiente, além de baixo custo, facilidade de e estabilidade térmica sob preparo temperaturas.1 A imobilização de heteropoliácidos (HPA's) em suportes sólidos é importante para a catálise. A área específica de um HPA não suportado é muito baixa (1-10 m²/g), porém é aumentada por dispersão em um apropriado, e muitas vezes interagem fortemente com os suportes que apresentam baixos níveis de carga. 2,3


Este trabalho apresenta os resultados da preparação de argilas tratadas com H₃PMo₁₂O₄₀ (ác. fosfomolíbdico-HPA) e com CF₃SO₃H (ác. trifluormetanossulfônico - TfOH). A atividade foi avaliada na reação de ácido mandélico com metanol, para produção de mandelato de metila.⁴

Resultados e Discussão

O HPA foi dissolvido em metanol e água deionizada e esta solução foi adicionada à argila previamente seca, sob agitação magnética. O TfOH foi dissolvido em solvente anidro e adicionado à argila, sob agitação magnética, em atmosfera inerte. Estes catalisadores foram caracterizados por Difração de Raios X (XRD), Análise Térmica (TGA/DTA), Microscopia Eletrônica, Espectroscopia de absorção na região do Infravermelho (FTIR) e RMN-MAS de ²⁷AI, ²⁹Si, ¹³C e ³¹P. ⁵ Os resultados comprovaram a presença de HPA e a intercalação de TfOH nos suportes lamelares.

Os argilominerais de partida (ARG) e modificados (ARG/HPA e ARG/TfOH) foram testados como catalisadores heterogêneos em reações de esterificação do ácido mandélico, a temperatura ambiente durante 90min. O acompanhamento da reação foi feito por RMN de ¹H (Figura 1), a partir dos valores das integrações dos sinais dos

hidrogênios metínicos do reagente e do produto (em 5,22 e 5,18 ppm, respectivamente).

Figura 1. Comparação dos espectros de RMN de ¹H (300 MHz, CDCl₃/TMS) obtidos para os produtos brutos das reações do ácido mandélico com metanol, catalisadas por ARG, ARG/HPA e ARG/TfOH.

Foram alcançadas conversões de 89% com o catalisador ARG/TfOH e de 94-98% com o catalisador ARG/HPA, com 100% de seletividade.

Conclusões

Os resultados obtidos na reação do ácido mandélico com metanol, catalisada pelas argilas ácidas ativadas com HPA e TfOH evidenciaram a alta atividade e alta seletividade dos catalisadores preparados.

Agradecimentos

Os autores agradecem ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelo suporte financeiro (bolsas PIBIC e DSc). ¹Mitsutani, A. *Catal. Today.* 2002, 73, 57.

- ² Shringarpure, P. A.; Patel, A. Chem. Eng. J. 2011, 173, 612.
- ³ Bhorodwaj, S. K.; Dutta, D. K. *Appl. Catal. A: General.* **2010**, 378, 221.

 ⁴ Rafiee, F. Joshachani, M. Tork, F. Fakhri, A. Fayani, S. I.Mol. Catal.
- ⁴ Rafiee, E; Joshaghani, M.; Tork, F.; Fakhri, A.; Eavani, S. J.Mol. Catal. A **2008**, 283, 1.
- ⁵ Oliveira, G.A.; Gonzalez, W.A.; San Gil, R.A.S.; Borré, L.B.; Emmanuel, T.L.; Gelves, L.G.V. Ext.Abstract, *XV International Clay Conference*, Rio de Janeiro, 2013.

37ª Reunião Anual da Sociedade Brasileira de Química

¹(UFRJ) Universidade Federal do Rio de Janeiro/Instituto de Química, Av. Athos da Silveira Ramos, nº 149, Lab.605/614, Ilha do Fundão, RJ, Brasil.Cidade Universitária

²(IME) Instituto Militar de Engenharia/Departamento de Química – Rio de Janeiro – RJ.