Determinação da adulteração do azeite de oliva com outros óleo comestíveis por espectrofluorimetria e análise multivariada

Marilena Meira² (PQ), Cristina M. Quintella¹ (PQ), Erika M. O. Ribeiro¹ (PQ), Mariana Andrade Santos² (IC), Saionara Luna¹ (PG)*, Alexandre Lopez Del Cid¹ (IC)

Palavras Chave: Azeite de oliva extra virgem, adulteração, fluorescência, análise multivariada.

Introdução

O objetivo deste estudo foi analisar a adulteração do azeite de oliva com óleos comestíveis. Esse óleo é produzido a partir de azeitonas, o fruto da oliveira. O nome "azeite de oliva" pode ser aplicado apenas ao óleo puro obtido a partir de azeitonas, não podendo ser aplicado às misturas compostas deste óleo com outros óleos, como soja ou milho, que são genericamente conhecidas como óleos compostos. A maior diferenciação de azeite a partir de outros óleos comestíveis está associada com o elevado teor de ácidos graxos monoinsaturados, tal como o ácido oleico, e reduzido teor de ácidos graxos saturados, o que auxilia no controle do colesterol no sangue, ajudando a reduzir o colesterol "ruim" (LDL) e manter um nível adequado de colesterol "bom" $(HDL)^{1}$.

Resultados e Discussão

Através do PCA, descobrimos que apenas dois componentes principais (PC) explicaram 97,68% da variância dos dados, onde 89,68% por PC1 e 8% por PC2.

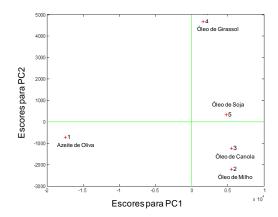


Figura 1. Escores PC1 x PC2 para as amostras de azeite de oliva extra virgem e óleos de milho, soja, canola e girassol.

O PC1 separou as amostras pela sua composição química em duas regiões distintas, o azeite de oliva extra virgem e outros óleos comestíveis (Figura 1).

A amostra de azeite de oliva extra virgem apresentaram escores negativos e as amostras de óleos vegetais escores positivos.

As diferentes composições de ácidos graxos no azeite de oliva e nos outros óleos^{2,3} podem explicar as diferenças entre as matrizes de excitação-emissão apresentadas por PCA. Azeite de oliva extra - virgem é rico em ácido oléico (55-83%), que é monoinsaturado, enquanto os óleos de milho, soja e girassol contêm predominantemente ácidos graxos poliinsaturados. O óleo de girassol tem o maior teor de ácido linoléico (55-75 %), o qual tem duas ligações duplas.

Conclusões

Devido aos preços mais baixos do mercado, óleos comestíveis, tais como soja, milho, canola e girassol, são susceptíveis de ser utilizados como adulterantes de azeite extra-virgem visando enriquecimento ilícito. O método proposto neste trabalho, que combinou espectrofluorimetria com PCA, foi rápido e preciso para a detecção da adulteração e tem o potencial de ser utilizado para controle de qualidade e rotulagem dos azeites de oliva extra-virgem.

Agradecimentos

Os autores agradecem ao CNPq e FAPESB pelas bolsas e auxílio financeiro.

^{*}saionaraluna@gmail.com

¹Universidade Federal da Bahia, Av. Barão de Jeremoabo s/n. Campus de Ondina, Salvador, BA, Brasil, CEP: 40.170-290.

²Instituto Federal de Educação, Ciência e Tecnologia - Campus Simões Filho. CEP 43700. Simões Filho- Bahia.

¹Logan, A. C. Omega-3 and depression research: Hold the olive oil. *Prostaglandins*, 265 *Leukotrienes and Essential Fatty Acids*, 72, 6, 441 2005

²ANVISA. Resolução nº 482. Regulamento técnico para fixação de identidade e qualidade de óleos e gorduras vegetais. *Diário Oficial da República Federativa do Brasil.* **1999**.

³Lee, D. S.; Noh, B. S.; Bae, S. Y., Kim, K. Characterization of fatty acids 262 composition in vegetable oils by gas chromatography and chemometrics. *Analytica Chimica Acta*, 358, 2, 163-175, **1998**.