Desenvolvimento de Modelos QSAR para Inibidores do Receptor TGF-β tipo I (ALK-5)

Sheila C. Araujo (PG)^{1*}, Vinícius G. Maltarollo (PG)¹, Jadson C. Gertrudes (PG)², Káthia M. Honório (PQ)^{1,2}

*sheila.shalala@gmail.com

¹Centro de Ciências Naturais e Humanas - UFABC, ²Escola de Artes, Ciências e Humanidades – USP

Palavras Chave: TGF-\$\beta\$ tipo I, ALK-5, Câncer, QSAR, Docking

Introdução

A ativação do receptor tipo 1 do fator de transformação celular beta (TGF- βRI / ALK-5) modula negativamente a divisão celular. Desta forma, uma das estratégias para o tratamento do câncer é bloquear a sinalização desse receptor empregando diferentes ligantes^{1,2}. Neste trabalho, foram construídos modelos de QSAR clássico com o objetivo de contribuir para o estudo das relações entre estrutura química e atividade biológica de compostos derivados de 1,5-naftiridina, pirazol e quinazolina e que apresentam afinidade pelo receptor TGF- βRI.

Materiais e métodos

A estrutura 3D dos compostos dos conjuntos de treinamento (46 moléculas) e teste (12 compostos) foi construída na plataforma Sybyl 8.1 e sua geometria foi otimizada usando o método semi-empírico (PM3) implementado no programa MOPAC. Na sequência, a fim de gerar uma conformação bioativa dos compostos, foi realizado o estudo de docking empregando o pacote computacional GOLD 5.0 com a função GoldScore. Após a obtenção da geometria 3D, foram calculadas propriedades moleculares como energia dos orbitais, momento de dipolo e outros descritores empregando o método DFT (B3LYP/6implementado 311g(d)) no pacote computacional Gaussian09. Descritores estereoquímicos como volume, área e outros foram calculados usando os programas Spartan 08, HyperChem 8.1 e Sybyl 8.1. Também foram calculados descritores topológicos empregando o programa E-Dragon 2.1 disponível no servidor VCCLAB. Assim, foi testada a capacidade dos métodos para selecionar descritores químicos capazes de gerar um modelo QSAR robusto. Os métodos de seleção de variáveis utilizados neste trabalho foram: WPCA (Weighted Principal Component Analysis), FW (First version of Fisher's Weight), MFW (Second version of Fisher's Weight) e OPS (Ordered Predictor Selection), implementados no pacote MATLAB. Após essa etapa, a geração dos modelos QSAR foi realizada empregando o método dos mínimos quadrados parciais (PLS) implementado no programa Pirouette 3.11. A qualidade dos modelos foi avaliada segundo a consistência interna q^2 (Leave-one-out e Leave-N-out) e externa (r^2 do conjunto-teste e análise dos valores residuais); a sensibilidade da randomização (y-scrambling) e o potencial de predição externo (r²m) também foram calculados.

Resultados e Discussão

Inicialmente, o conjunto de variáveis apresentava 1719 descritores e, a partir da aplicação dos 4 métodos de

redução de variáveis, seguidos da técnica de Seguential Forward Selection (SFS), foram obtidos 4 subconjuntos de 8 variáveis. Os principais resultados obtidos durante essa etapa podem ser observados na Tabela 1. É possível observar que o modelo 3 apresentou melhores resultados. É interessante observar que, em comparação com os outros três modelos construídos, o melhor modelo apresentou satisfatórios coeficientes de correlação interna e externa $(q^2_{LOO} = q^2_{LNO} = 0.74, r^2 = 0.83 \text{ e } r^2_{teste} = 0.87) \text{ e os}$ demais resultados (Y- scrambling e os valores médios de q^2 e r^2) indicam a boa consistência interna do modelo (Tabela 1). Finalmente, a qualidade preditiva do modelo 3 pode ser avaliada a partir do valor de r_m^2 de todos os modelos. Apenas os modelos MFW e OPS (modelos 3 e 4, respectivamente) apresentaram valores potencialmente preditivos aceitáveis, mas é evidente que a predição externa do modelo 3 foi superior ao modelo 4. No entanto, o modelo obtido com a combinação de MFW e SFS foi o que apresentou os menores valores SEV e SEC.

Tabela 1. Parâmetros estatísticos dos modelos obtidos

	WPCA	FW	MFW	OPS
modelo	1	2	3	4
q^2_{LOO}	0,66	0,74	0,74	0,74
SEV	0,46	0,40	0,40	0,40
q^2_{LNO}	0,65	0,74	0,74	0,73
r²	0,77	0,83	0,83	0,84
SEC	0,40	0,35	0,35	0,34
$r^2_{ m teste}$	0,67	0,92	0,87	0,70
r ² _m	0,42	0,47	0,57	0,54
PCs	6	5	6	6
q ² Y-scrambling	0,17	0,18	0,18	0,18
r ² _{Y-scrambling}	-0,34	-0,33	-0,31	-0,33

Conclusões

Os modelos empregando as técnicas WPCA, FW, MFW e OPS-PLS foram investigados neste estudo a fim de descrever as relações entre a estrutura química e o receptor TGF- β RI / ALK-5. O melhor algoritmo para seleção de variáveis foi MFW, pois resultou em coeficientes de correlação significativos (q^2 =0,83, r^2 =0,74 e r^2 teste=0,87). Portanto, o modelo obtido pode ser considerado preditivo e utilizado para predizer a atividade biológica de outros compostos dentro desta classe estrutural.

Agradecimentos

L'Oréal/ABC/UNESCO, CNPq, FAPESP e CAPES.

¹ Dewang, P. M.; Kim, D. *Bioorg. Med. Chem.* **2010**, 20, 4232.

² Gellibert, F. et al. *Bioorg. Med. Chem.* **2009**, 19, 2281.