TERMODINÂMICA DE ADSORÇÃO DO METAL-TRAÇO NÍQUEL EM ARGISSOLO DE SÃO JOSÉ DO RIO PRETO/SP.

Simone Alcina da Silva¹ (IC) e Lidia Maria de Almeida Plicas^{1*} (PQ). *plicas@ibilce.unesp.br

Palavras Chave: Solo, Isotermas de adsorção, Termodinâmica.

Introdução

Os níveis de metais-traço nos solos dependem dos constituintes da rocha de origem, porém para solos plenamente desenvolvidos a influência é significativamente menor. Contudo, níveis maiores que os esperados são encontrados fregüentemente devido às ações antrópicas, como a utilização de fertilizantes e defensivos agrícolas. Alguns produtos agrícolas usados como corretivos ou fornecedor de nutrientes, a base de fosfato, podem representar uma fonte de contaminação por metais-traço¹. A determinação de metais-traço em solos é uma importante ferramenta no monitoramento da poluição ambiental, para tanto, faz-se necessário o estudo do comportamento da adsorção para estabelecer a relação entre o conteúdo total do metal e o conteúdo disponível e, os fatores que influenciam esta relação e afetam a disponibilidade do metal para as plantas e o processo de percolação e, ou de lixiviação. Este trabalho teve por objetivo avaliar o processo de adsorção de íons de níquel em solo estéril de São José do Rio Preto/SP usando os modelos de isotermas de Langmuir e Freundlich².

Resultados e Discussão

A quantidade de metal foi determinada por espectrometria de absorção atômica por chama e os dados obtidos foram tratados empregando-se os modelos de isotermas de Langmuir e Freundlich. Os dados obtidos das isotermas estão dispostos na Tabela 1.

Tabela 1. Dados das isotermas linearizadas de Langmuir e Freundlich.

Isoterma	Parâmetros	25 °C	35 °C	45 °C	55 °C
Langmuir	Q _{máx} / mg kg ⁻¹	435	667	714	714
	K _L / L kg ⁻¹	0,25	0,10	0,09	0,11
Freundlich	1/n	0,52	0,66	0,62	0,68
	K _F	76,1	65,7	74,1	71,5

Para a determinação dos parâmetros termodinâmicos, nas temperaturas de 25, 35, 45 e

55 °C, utilizou-se as relações ΔG° = RTlogK_d, sendo K_d a constante de distribuição e, ΔG° = ΔH° - $T\Delta S^{\circ}$. Para a determinação dos parâmetros termodinâmicos, nas temperaturas de 25, 35, 45 e 55 °C, utilizou-se as relações ΔG° = RTlogK_d, sendo K_d a constante de distribuição e, ΔG° = ΔH° - $T\Delta S^{\circ}$.

A partir do gráfico de $log K_d$ contra 1/T, os parâmetros termodinâmicos foram calculados e estão dispostos na Tabela 2.

Tabela 2. Parâmetros termodinâmicos da adsorção de íons Ni^{2^+} ao solo amostrado.

T/K	K _d / L g ⁻¹	ΔG° / kJ mol ⁻¹	ΔH° / kJ mol ⁻¹	ΔS° / J K ⁻¹ mol ⁻¹
298,15	0,18	- 1,82		
308,15	0,22	- 1,67	+ 0,79	+ 7,97
318,15	0,22	- 1,75		
328,15	0,21	- 1,83		

Os valores relativamente altos de K_d refletem a grande afinidade dos sítios de adsorção do solo pelos íons de Ni^{2+} . Valor de ΔH^o , menor que 40 kJ mol⁻¹, indica que o processo de adsorção é de natureza física, o valor positivo de ΔS^o sugere o aumento da aleatoriedade na interface sólidosolução durante a adsorção. Os valores de ΔG^o indicam que os processos são favoráveis.

Conclusões

O modelo de Langmuir ajustou-se melhor ao processo de adsorção. O valor positivo de ΔH^o indica que a adsorção de Ni^{2^+} ao solo é um processo endotérmico, os valores negativos de ΔG^o mostram que os processos são termodinamicamente favoráveis e que as formas adsorvidas são mais estáveis que aquelas em solução 3 .

Agradecimentos

Projeto RENOVE - PROPe - UNESP.

¹Instituto de Biociências, Letras e Ciências Exatas – IBILCE – UNESP. São José do Rio Preto – SP.

Silva, F. N. **2006**, 127. *Tese* (*Doutorado*) – Universidade Federal de Lavras. MG.

² Ruthven, D. M. Principles of Adsorption and Adsorption Processes. 1984. New York: John Wiley & Sons, 433.

³ Rocha W. S. D.; Alleoni, L. R. F.; Regitano, J. B. R. Bras. Ci. Solo. **2003**, 27, 239.