Photodynamic inactivation of bioluminescent *Escherichia coli* by cationic pyrrolidine-fused chlorins and isobacteriochlorins

Marina Q. Mesquita\(^1\) (PG), José C. J. M. D. S. Menezes\(^1\) (PG), Maria A. F. Faustino\(^1\) (PQ), Maria G. P. M. S. Neves\(^1\) (PQ), Augusto C. Tomé\(^1\) (PQ), Ângela Cunha\(^2\) (PQ), Adelaide Almeida\(^2\) (PQ), Steffen Hackbarth\(^3\) (PQ), Beate Röder\(^3\) (PQ), José A. S. Cavaleiro\(^*\) (PQ) e-mail: jcavaleiro@ua.pt

\(^1\)Department of Chemistry & QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal;
\(^2\)Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal;
\(^3\)Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin, Germany

Key Words: Chlorin, Isobacteriochlorin, Photodynamic inactivation, *Escherichia coli*, cationic photosensitizers

Introduction

Photodynamic inactivation (PDI) represents a potential alternative methodology to inactivate microbial cells. This approach is based on the photodynamic therapy concept that comprises the action of three components: a photosensitizer (PS), a light source and oxygen (1). Porphyrins, chlorins and isobacteriochlorins can be used as PSs. In this communication we will report the results obtained in the PDI of bioluminescent *E. coli*, Gram (-) bacteria, in the presence of cationic pyrrolidine fused chlorins and isobacteriochlorins obtained from 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin by 1,3-dipolar cycloadditions and after their immobilization on solid supports.

Results & Discussion

![Figure 1. Structures of cationic chlorin 1 and isobacteriochlorin 2 derivatives used in this study.](image)

The fluorescence and singlet oxygen quantum yields of 1 and 2 obtained in dimethylformamide (DMF) are listed in Table 1.

<table>
<thead>
<tr>
<th>Compound</th>
<th>(\lambda_{\text{max}}/\text{nm})</th>
<th>Fluorescence quantum yield ((\Phi_f)) (\pm0.05)</th>
<th>(\text{O}2) quantum yield ((\Phi{\text{O}_2})) (\pm0.05)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>402 (5.23), 500 (4.19), 525 (3.64), 594 (3.69), 647 (4.64)</td>
<td>0.13</td>
<td>0.71</td>
</tr>
<tr>
<td>2</td>
<td>408 (5.08), 503 (3.88), 546 (3.97), 599 (4.19), 650 (3.65)</td>
<td>0.08</td>
<td>0.62</td>
</tr>
</tbody>
</table>

The photodynamic inactivation potential of compounds 1 and 2 and also of 1 on a solid support was investigated using the recombinant bioluminescent *E. coli*.

In this study the cationic isobacteriochlorin 2 was an effective PS against the bioluminescent *E. coli*, reaching the limit of detection (~6.1 log reduction) after a light dose of 36 J cm\(^{-2}\) for the highest concentration tested (20 \(\mu\)M). Photodynamic inactivation of *E. coli* was reached when derivative 1 was immobilized on a solid support.

Conclusions

The results obtained in this work confirm the high potential of these compounds to be used for photodynamic inactivation of Gram (-) bacteria.

Acknowledgments

Thanks are due to the University of Aveiro, Fundação para a Ciência e a Tecnologia (FCT, Portugal), European Union, QREN, FEDER and COMPETE for funding the QOPNA research unit (project PEst-C/QUI/UI0062/2013). JCJMDMS Menezes thanks QOPNA for his research grant.