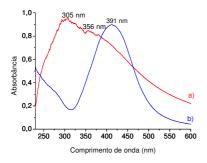
# Nanocompósitos sílica funcionalizada/prata incorporados a blendas de silicone-acrilato aplicadas a próteses faciais

Fabiano da C. Sá<sup>1\*</sup> (IC), Sidicleia B. C. Silva<sup>4</sup> (PG), Miguel Angel P. Flores<sup>4</sup> (PG), Eliane C. V. Revoredo<sup>2</sup> (PQ), André Galembeck<sup>3,4</sup> (PQ) e Débora S. C. dos Anjos<sup>1</sup> (PQ) \*fabiano-fcs@hotmail.com

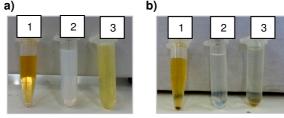
<sup>2</sup> Hospital de Câncer de Pernambuco, Centro de Reabilitação Buco Maxilo Facial, Recife-PE.


Palavras Chave: Nanocompósitos sílica funcionalizada/prata, blendas poliméricas, próteses faciais.

### Introdução

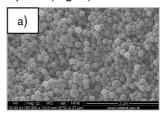
A inserção de nanopartículas de prata (AgNPs) confere aos materiais propriedades sanizantes, evitando a proliferação de fungos e bactérias<sup>1</sup>, assim como a incorporação de sílica fornece aprimoramento nas propriedades mecânicas em matrizes de silicone<sup>2</sup>. De acordo com Dos Anjos e colaboradores<sup>3</sup> as blendas de silicone-acrilato consistem em um potencial material para a produção de próteses faciais. Neste sentido, este trabalho descreve a síntese de nanocompósitos de funcionalizada com metacriloxi-(SF-Ag<sup>0</sup>) propiltrimetoxisiliano/prata sua incorporação a blendas de silicone-acrilato (PDMS-PMMA) utilizáveis como próteses faciais.

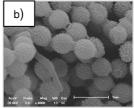
### Resultados e Discussão


As sílicas funcionalizadas (SF) foram obtidas de Mena e colaboradores<sup>4</sup>. com nanocompósitos foram sintetizados pela adição de uma solução de nitrato de prata à dispersão de SF, seguido do gotejamento em um agente redutor (NaBH<sub>4</sub>). As blendas de silicone-acrilato foram preparadas por *casting*<sup>5</sup>. Os materiais obtidos foram caracterizados por IV, UV-Vis e MEV. Pelo IV, bandas referentes aos grupamentos carbonila v1720 cm<sup>-1</sup>. típicos de ésteres, confirmam funcionalização da sílica. No UV-Vis o aparecimento de uma banda de absorção em 305nm indica a formação de AgNPs ainda menores sobre as partículas de sílica (Fig. 1a).



**Figura 1:** UV-Vis a) nanocompósito SF-Ag<sup>0</sup> b) AgNPs via redução por borohidreto em meio aquoso.


Após a centrifugação das dispersões das AgNPs, SF e SF-Ag<sup>0</sup> a 12.000 rpm (8 min), observou-se completa separação nas dispersões de SF e SF-


Ag<sup>0</sup>, obtendo-se um pó branco e amarronzado, respectivamente, tornando o dispersante incolor, enquanto que na dispersão de AgNPs a dispersão permaneceu amarelada (Fig. 2). Este fato indica que as AgNPs estão ligadas às superfícies das sílicas, confirmando a formação do nanocompósito SF-Ag<sup>0</sup>.



**Figura 2.** a) antes da centrifugação e b) após centrifugação, sendo (1) AgNPs (2) SF (3) SF-Ag<sup>0</sup>

Foi observada uma mudança na morfologia do nanocompósito, comparado a nanopartícula de sílica, tornando-a mais rugosa, indicando que ocorreu uma interação entre a superfície da sílica e a prata (Fig. 3).





**Figura 3:** a) Nanopartículas de sílica e b) Nanocompósito SF-Ag<sup>0</sup>.

Os nanocompósitos sílica/prata foram incorporados à superfície das blendas pela formação de um fino filme de silicone contendo os nanocompósitos, conferindo-lhe propriedades sanizantes.

#### Conclusões

Os nanocompósitos SF-Ag<sup>0</sup> consiste em uma importante estratégia que possibilita a incorporação AgNPs, sem que haja a inserção de água ao sistema, pois sabe-se que a água reduz as propriedades mecânicas da blenda de siliconeacrilato.

## **Agradecimentos**

Ao CNPq Proc. 488374/2013-8, CETENE e DQF/UFPE.

37ª Reunião Anual da Sociedade Brasileira de Química

<sup>&</sup>lt;sup>1</sup> Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano, Campus Petrolina, Petrolina-PE

<sup>&</sup>lt;sup>3</sup> Centro de Tecnologias Estratégicas do Nordeste, Cidade Universitária, Recife-PE.

<sup>4</sup> Universidade Federal de Pernambuco, Departamento de Química Fundamental, Cidade Universitária, Recife-PE.

Silver, S.; et al. J Ind Microbiol Biotechnol, 2006, 33,627-634.

<sup>&</sup>lt;sup>2</sup>Chen, Y.; et al *Progress in Organic Coatings.* **2005**, 54, 120.

<sup>&</sup>lt;sup>3</sup>Anjos, D.S.C.; et al *Polymer Engineering and Science* **2010**, 39, 606.

<sup>&</sup>lt;sup>4</sup>Meng, H.B.; et al. Surface and Coatings Technology. **2009**, 204, 91.

<sup>&</sup>lt;sup>5</sup>Dos Anjos, D. S. C., Tese, PPGQ, DQF, UFPE. **2011**