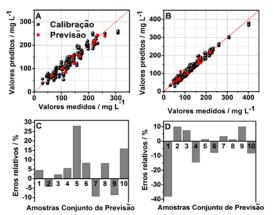
Aplicação das espectroscopias FTIR-ATR e NIR utilizando a regressão PLS-OPS na determinação de cafeína em bebidas energéticas: um modelo multiproduto.

Jussara V. Roque¹ (PG) *, Camila Assis¹ (PG), Thálisson S. Souza¹ (PG), Guilherme R. Pereira¹ (IC), Reinaldo F. Teófilo¹ (PQ). Universidade Federal de Vicosa. *jussararoque@live.com

Av, P.H. Rolfs s/n. Departamento de Química. Universidade Federal de Viçosa. Viçosa – MG, Brasil. CEP: 36570-900. Palavras Chave: Bebidas energéticas, Cafeína, NIR, FTIR, PLS-OPS, Quimiometria.


Introdução

Nos últimos anos, o consumo de bebidas energéticas têm crescido significativamente devido à promessa na melhora do desempenho físico e mental¹. A cafeína, seu componente mais importante, possui efeitos estimulantes sobre os sistemas nervoso central e cardiovascular, podendo provocar até a morte se consumida em excesso². Neste contexto, um método analítico rápido, confiável e de baixo custo é necessário para controle da concentração de cafeína nestas bebidas.

Neste trabalho, foram comparados dois métodos espectroscópicos: infravermelho médio com transformada de Fourier com refletância atenuada total (FTIR-ATR) e infravermelho próximo (NIR). Foram utilizados 80 amostras para obtenção dos espectros e quantificação da cafeína. A quantificação foi realizada em um cromatógrafo líquido com detector PDA - UV/Visível monitorando o comprimento de onda 272 nm.

Os espectros e os resultados do HPLC foram importados para o MatLab R2009b e utilizados para construir o modelo de calibração usando o método dos quadrados mínimos parciais (PLS) com seleção de variáveis pelo método da seleção dos preditores ordenados (OPS)³. Os algoritmos utilizados foram escritos no laboratório. As colunas da matriz foram centradas na média e a primeira derivada foi aplicada às linhas.

Resultados e Discussão

Figura 1. Valores medidos e preditos para o conjunto de calibração e de previsão para os modelos PLS-OPS usando FTIR (A) e NIR (B). Erros relativos para as amostras de previsão para o FTIR (C) e NIR (D).

37ª Reunião Anual da Sociedade Brasileira de Química

Tabela 1. Parâmetros estatísticos dos modelos para o FTIR e NIR com todas as variáveis e com variáveis selecionadas pelo método OPS.

	Completo		OP	OPS	
	FTIR	NIR	FTIR	NIR	
Vetor	-	-	Reg	Reg	
hOPS	-	-	8	10	
hMOD.	4	9	4	9	
nVARs	801	3112	220	675	
RPD	2.47	1.65	2.88	2.75	
RMSECV	21.17	34.84	18.42	22.83	
Rcv	0.92	0.85	0.94	0.94	
RMSEP	17.59	29.61	16.45	12.46	
R _P	0.97	0.9	0.97	0.98	

Vetor Reg: vetor de regressão usado no OPS; h: número de variáveis latentes para o OPS (hOPS) e para o modelo (hMod); nVars: número de variáveis usadas; RPD: razão de desempenho do desvio; RMSE: Raiz do erro quadrático médio para a validação cruzada (CV) e para a previsão (P), R: coeficiente de correlação para a validação cruzada (CV) e para a previsão (P).

As concentrações de cafeína nas amostras do conjunto de calibração variaram de 31 a 308 mg L⁻¹. O coeficiente de variação das análises cromatográficas foi de 4.85% para cinco repetições, o que indica uma alta precisão nestas análises.

A partir da Tabela 1 observa-se que a espectroscopia FTIR é capaz de analisar cafeína mesmo sem a seleção de variáveis. Por outro lado, para o NIR, boas previsões são obtidas apenas com o uso do OPS. Os resultados indicam que a concentração de cafeína pode ser determinada em energéticos sem qualquer preparo da amostra, independente da marca, desde que o refrigerante seja calibrado.

Conclusões

Ambos os métodos espectroscópios com seleção de variáveis mostraram-se capazes de realizar previsões de cafeína em energéticos sem preparo da amostra e em poucos minutos.

Agradecimentos

À CAPES pela concessão da bolsa.

¹ Safefood - The Food Safety Promotion Board. A review of the health effects of stimulant drinks - Final report. 2002.

² Cafeína y Salud. [acesso em: 20 jan 2014]. Disponível em URL: http://www.caffeineandhealth.net/AboutUs1.htm.

³ Teófilo R.F., Martins J.P.A., Ferreira M.M.C, J. Chemom., 2009, 23, 32-48