Síntese e avaliação da ação citotóxica in vitro do derivado tiazolidínico 5-(2-Bromo-6-fluorobenzilideno)-tiazolidina-2,4-diona

Priscila B. G. S. Santiago¹ (PG)* (pbrandaofarmacia@gmail.com), Terezinha G. Silva¹ (PQ), Julianna F. C. Albuquerque¹ (PQ),

1. Universidade Federal de Pernambuco – Dept^o de Antibióticos – Recife-PE

Palavras Chave: câncer, citotoxicidade, derivado tiazolidínico

Introdução

O câncer é uma terrível e antiga doença que no século XX fora diagnosticada como um das principais causas de mortes e vem difundindo-se de forma contínua, aumentando sua incidência no século 21 (AGRAWAL et al., 2007; LESYK et al., 2011). A síntese de novos fármacos tem contribuído decisivamente para a evolução da terapêutica, através do uso de novas metodologias sintéticas e dos estudos relação estrutura-atividade. Assim, é possível aumentar uma determinada atividade biológica e reduzir efeitos adversos (WHO, 2007; PRABHAKAR 2006). Os derivados et al., tiazolidínicos possuem propriedades com amplo espectro de ação em diversos alvos biológicos. Neste contexto, um novo derivado tiazolidínico foi sintetizado a partir de uma reação de condensação da tiazolidina-2,4-diona (Ju-32) com 2-Bromo-6fluorobenzaldeído (Ju-603) e foi analisado seu rendimento, tempo reacional e estrutura química. O produto obtido foi submetido à avaliação da atividade citotóxica através do método MTT utilizando as células de linhagem NCI-H 292 (carcinoma de pulmão).

Resultados e Discussão

O 5-(2-Bromo-6-fluorobenzilideno)-tiazolidina-2,4-diona (Ju-603) foi sintetizado partindo da tiazolidina-2,4-diona (Ju-32) 0,100g (0,00085 moles) e quantidade equimolar do reagente 2-Bromo-6-fluorobenzaldeído Fig. 1.

Figura 1. Esquema de síntese do composto Ju-603.

As propriedades físico-químicas dos compostos Ju-32 e Ju-603 estão expressas na Tabela 1.

As estruturas químicas foram comprovadas por meio de métodos físicos de espectroscopia de RMN ¹H e RMN ¹³C, Infravermelho (IV) e Massas.

37ª Reunião Anual da Sociedade Brasileira de Química

Tabela 1. Propriedades físico-químicas, RMN¹H; RMN¹³C e IV dos compostos Ju-32 e Ju-603.

Compostos	Ju-32	Ju-603
Ponto de Fusão	122 °C	115 °C
Rf (CHCl ₃ /CH ₃ OH 0,96:0,04)	0,49	0,4
Rendimento	86 %	40 %
RMN ¹ H e RMN ¹³ C (DMSO-d ₆ , 300 MHz, ppm)	12(s, 1H, N-H); 4,11(s, 2H, CH2)	7,77(s, 1H, -CH=); 7,47-7,45(m, 1H, Ar); 7,31-7,23(m, 1H, Ar); 7,15-7,09(m, 1H, Ar); δ 167.18, 131.99, 131.87, 128.98, 128.93, 127.27, 115.57, 115.27
Infravermelho (cm ⁻¹ , KBr 1%)	3115(N-H); 1670- 1735(C=O)	3393 (NH); 1671 (C=O), 1434 (C=C)

O composto sintetizado (Ju-603) apresentou atividade citotóxica excelente frente a linhagem celular NCI-H 292 com 83.6% de inibição do crescimento tumoral na concentração de 25 μ g/mL. Além disso, apresentou baixo valor de IC₅₀ de 15.43 μ g/mL, o que pode levar a considerá-lo como um candidato atraente para ensaios pré-clínicos.

Conclusões

O composto Ju-603 foi considerado puro diante de suas constantes físicas. Sua estrutura química foi elucidada. Apresentou atividade citotóxica relevante frente às células da linhagem NCI-H 292.

Agradecimentos

CNPq/CAPES

¹ AGRAWAL, A.; MURPHY, R. F., AGRAWAL, D. K. Mod Pathol; (20): 711-721, 2007.

² LESYK RB. et al. Biopolym Cell; 27: 107–117. 2011.

³ WORLD HEALTH ORGANIZATION (WHO). Health topics, Cancer. 2007.

⁴ PRABHAKAR YS, SOLOMON VR, GUPTA MK, KATTI SB. Top Heterocycl Chem.; 4: 161–249. 2006.