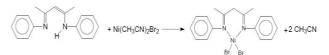
Oligomerização de propeno catalisado com complexo β-Diimina de níquel heterogeneizado em líquido iônico BMI.AICI₄

Katiúscia Machado Nobre^{1*} (PG), Katia Bernardo Gusmão¹ (PQ), Roberto F. de Souza¹ ★ (PQ)

Palavras Chave: Propeno, líquido iônico, BMI.AlCl4..

Introdução


As olefinas leves desempenham um papel de grande importância na indústria petroquímica; elas atuam como co-monômeros na obtenção de polietileno e como intermediários na síntese de plastificantes, detergentes e lubrificantes.

O principal método de síntese destes intermediários emprega as reações de oligomerização homogênea e heterogênea, que consistem em adições sequenciais de grupamentos olefínicos até que se atinja o número de carbonos desejados na cadeia. Nas reações homogêneas, ocorre a obtenção seletiva¹ e de elevada atividade de oligômeros que apresentam peso molecular e estrutura desejados. esse processo Contudo, apresenta algumas limitações tanto ambientais quanto econômicas, pois gera grandes volumes de efluentes e consome grande quantidade de energia; o catalisador não conseque ser reutilizado por ser inviável a sua separação. Desse modo, e dentro do contexto de química verde, há uma grande necessidade do uso de reações bifásicas que permitam uma fácil separação entre o produto e o catalisador², para que este último possa ser reutilizado em outras reações. Assim, nesse trabalho foi realizada a comparação entre reações homogêneas e heterogêneas com dibromo(N,N-bis(fenil)-2,4-pentanocomplexo diimina) níquel (II) e líquido iônico BMI.AlCl₄ (LI).

Resultados e Discussão

O complexo dibromo (N,N-bis(fenil)-2,4-pentanodiimina) níquel (II) (C1) foi sintetizado baseado no método de Feldman et al.³; a reação é ilustrada na figura 1.

O ligante e o complexo sintetizados foram caracterizados através de análise de infravermelho, como mostram os valores da tabela 1.

Figura 1. Síntese do complexo dibromo(N,N-bis(fenil)-2,4-pentanodiimina) níquel (II)

Tabela 1. Análise de Infravermelho

Atribuições	C-H metila	C-H aromáticos	C=N	N-H
Ligante v(cm ⁻¹)	2978 2923	2889 2845	1632	1550
Complexo v(cm ⁻¹)	2972 2913	2890 2789	1670	-

37ª Reunião Anual da Sociedade Brasileira de Química

As reações de oligomerização foram realizadas em um reator de vidro com banho termostatizado a 30°C, a uma pressão de 5 atm com agitação magnética e uma razão Al/Ni de 200. As reações homogêneas foram realizadas em cicloexano com EASC (sesquicloreto de etil alumínio) 20% como cocatalisador e 90µmol de C1. As reacões heterogêneas foram realizadas com 90µmol de C1, 3,20 mL de LI + EASC e 20 mL de cicloexano. Os obtidos foram oligômeros analisados cromatografia gasosa, através de um equipamento Shimadzu GC2010, com temperatura de forno entre 36°C e 250°C, com isoctano como padrão interno. A tabela 2 apresenta os resultados após a análise cromatográfica dos produtos obtidos.

Tabela 2: Dados dos testes catalíticos

	Reação	FR (s ⁻¹)	C ₆ (%)	Produto Majoritáro 2-M-2-P (%)
1	Heterogênea	6,0	90	42,1
2	Homogênea	1,1	81	53,2

Comparando a reação 1 com a reação 2, mostradas na tabela 2, é possível observar que a reação com LI mostra uma maior atividade em relação à monofásica, devido a uma maior reatividade da fase em que se encontra o BMI.AICI₄, se compararmos com a fase orgânica. Em ambas as reações foram apresentadas altas seletividades para compostos na faixa de 6 carbonos, apresentando ainda assim uma maior seletividade para as reações heterogeneizadas. Além disso, o produto majoritário obtido em ambas foi 2-metil-2- penteno.

Conclusões

O estudo mostrou que o complexo (C1) utilizado foi ativo nos testes catalíticos e a incorporação do líquido iônico alquilaluminato se mostrou efetiva para as oligomerizações, pois, além de se obter maior seletividade e atividade, é de fácil separação, podendo ser reutilizado em outras reações.

Agradecimentos

Os autores agradecem ao PRONEX/FAPERGS/ CNPQ e à CAPES.

- ¹. SKUPINSKA. J. Chem. Rev. . 1991, pp. 613-648.
- ². ROSSETTO, E., et al. Applied Catalysis A: General. 454, 2013, pp. 152-159.
- ³. FELDMAN, J., et al.Organometallics. 16, 1997, pp. 1514-1516.

¹Instituto de Química – UFRGS – RS (*katiusciamn@gmail.com) ★ In Memoriam