Efeito das peneiras moleculares contendo catalisadores de ferro na seletividade do produto de oxidação de hidrocarbonetos

Paula M. A. Machado^{1*} (PG), Alexandre M. Stumbo¹ (PQ), Christiane Fernandes¹ (PQ), Adolfo Horn Jr.1 (PQ). *pmachado@uenf.br

¹Laboratório de Ciências Químicas (LCQui) – Universidade Estadual do Norte Fluminense – Campos dos Goytacazes, RJ.

Palavras Chave: peneiras moleculares, catalisadores de ferro, oxidação, cicloexeno, cicloexano.

Introdução

oxidação seletiva de substratos orgânicos mediante catálise é um dos mais importantes processos na indústria química¹. Estas reações geram produtos de maior valor agregado que a matéria prima, tornando esta transformação interessante do ponto de vista econômico. Na natureza, existem metaloenzimas capazes de oxidar seletivamente diversos substratos, a condições ambientes1. Dentre sistemas catalíticos os miméticos a estas enzimas, destacam-se os sistemas heterogêneos, nos quais, além dos bons resultados, seus catalisadores podem ser reutilizados². O uso de peneiras moleculares na catalisadores podem obtenção dos catalisadores serve como uma tentativa de aumentar a seletividade das reações para produtos de maior valor³. Este trabalho tem como objetivo comparar o efeito do tipo da peneira molecular (NaY e MCM-41) utilizada para ancorar catalisadores de ferro e o efeito das mesmas sobre seletividade das reações de oxidação do cicloexano e do cicloexeno.

Resultados e Discussão

Os catalisadores foram obtidos por meio do ancoramento do ligante 2-hidroxibenzil(2piridilmetil)amina na zeólita NaY e na MCM-41, utilizando 3-glicidoxipropiltrimetoxisilano e, depois, complexação destes materiais com o FeCl₃.6H₂O. A caracterização dos catalisadores ancorados em NaY já foi relatada6. O catalisador ancorado na MCM-41 foi caracterizado por análise de CHN, IV, UV-VIS, TGA, RMN ²⁹Si, fisissorção de nitrogênio e raios-x de pó. A estrutura proposta do sítio ativo dos catalisadores é mostrada na Figura 1.

Figura 1. Estrutura proposta dos sítios ativos dos catalisadores.

A oxidação do cicloexano e do cicloexeno ocorreu na presença de peróxido de hidrogênio como agente oxidante, nas proporções molares de 1-1000-100 (catalisador-substrato-oxidante). Os resultados da oxidação do cicloexeno e do cicloexano são mostrados nas Tabelas 1 e 2, respectivamente. Na Tabela 1, observa-se que o catalisador ancorado na NaY obteve melhor atividade do que o ancorado na MCM-41 e maior seletividade para o hidroperóxido. A MCM-41 também foi mais seletiva para o

hidroperóxido, mas pode-se destacar uma maior propensão em formar epóxidos e álcool quando comparado com a NaY.

Tabela 1. Atividade catalítica para oxidação do cicloexeno.

	Conv. [*] (%)	Seletividade (%)			
Suporte (Cat.)		0		OH	ООН
NaY	30,34	4,75	3,33	4,58	87,67
MCM-41	21,92	15,92	3,47	8,17	72,44

 * Média de experimentos realizados em triplicatas. 24h de reação, em acetonitrila, a temperatura de 25 °C.

Tabela 2. Atividade catalítica para oxidação do cicloexano.

	Conv. [*] (%)	Seletividade (%)			
Suporte (Cat.)		Ċ	OH	ООН	
NaY	4,31	3,25	4,18	92,58	
MCM-41	9,96	4,02	9,84	86,24	

 * Média de experimentos realizados em triplicatas. 24h de reação, em acetonitrila, a temperatura de 25 °C.

Quando o substrato utilizado foi cicloexano (Tabela 2), o catalisador suportado na MCM-41 foi mais efetivo que aquele suportado em NaY. Este último continuou sendo mais seletivo para o hidroperóxido. O mesmo ocorre para o catalisador suportado em MCM-41, no entanto, este mostrou ser mais efetivo na formação do álcool do que da cetona quando comparado ao catalisador ancorado em NaY.

Conclusões

catalisadores heterogêneos de ferro apresentaram considerável atividade catalítica para a oxidação do cicloexeno e do cicloexano. Ambos apresentaram maior seletividade para a formação do hidroperóxido. Entretanto, a MCM-41 também apresentou uma maior seletividade para o produto epóxido, no caso do cicloexeno, e para o álcool, no caso do cicloexano, quando comparado a NaY.

Agradecimentos

CAPES, CNPq, FAPERJ E UENF.

Shan e Que Jr. **Journal of Inorganic Biochemistry** 100 (2006) 421.

Machado *et al.* **Colloids and Surfaces A: Physicochem. Eng. Aspects** 349 (2009) 162.

Karandicar *et al.* Applied Catalysis A: General 257 (2004) 133. Neves, A.; Brito, M.A. **Inorganica Chimica Acta**, 214 (1993) 5.

³⁶ª Reunião Anual da SBQ – apresentação de pôster.