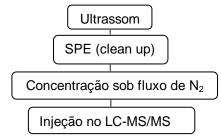
Análises de metabólitos de biodegradação anaeróbia de BTEX em solos mediante ultrassom-SPE e LC-MS/MS

Leidy R. Niño^{1*} (PG), Antonio A. Mozeto¹ (PQ), Pedro S. Fadini¹ (PQ).

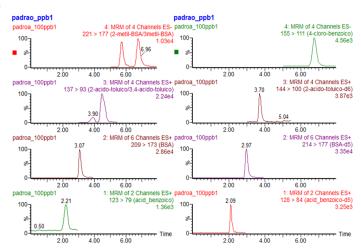
¹Laboratório de biogeoquímica Ambiental, Departamento de Química, Universidade Federal de São Carlos- São Carlos- SP. *Irnc@ufscar.br

Palavras Chave: metabólitos BTEX, biodegradação anaeróbia, ultrassom, SPE, LC-MS/MS.

Introdução


A contaminação ocasionadas por hidrocarbonetos aromaticos voláteis, como benzeno, tolueno, etilbenzeno e xilenos, conhecidos como BTEX é comumente observada em locais próximos a refinarias de petróleo ou postos de combustíveis. A biodegradação anaeróbia em solos tem sido estudada como tecnologia de recuperação de áreas contaminadas¹. Contudo, durante a biodegradação são produzidos compostos secundários, sendo que alguns deles podem ser mais tóxicos que os compostos originais. Este estudo apresenta uma metodologia para a análise de alguns metabólitos gerados pela via anaeróbia de degradação de BTEX em solos, sendo alguns deles: ácido benzóico (AB), ácido benzil succínico (BSA), ácido o-, m-, p- toluico, 2-metil e 3-metilbenzilsuccinato (2-metilBSA, 3-metilBSA); os quais tem sido estudados previamente somente em água subterrânea^{1,2}. Neste trabalho é proposta uma metodologia para solos mediante Ultrassom-SPE sendo que as análises foram realizadas por cromatografia líquida acoplada a espectrometria de massas (LC-MS/MS), em um equipamento Waters, Acquity UPLC-TQD.

Resultados e Discussão


No método aqui apresentado, cada analito foi calibrado no MS/MS (cone e energia de colisão), seguido da etapa de otimização da separação cromatográfica, sendo a extração realizada em banho de ultrassom seguido de uma etapa de limpeza do extrato por SPE conforme descrito no esquema apresentado na Figura 1.

O método de extração, envolve a utilização de cartucho SPE C18, que têm propiciado recuperações que variaram entre 89-112%.

Na figura 2 são apresentados os cromatogramas dos analitos e os padrões internos usados no método, com separação cromatográfica otimizada a uma razão 35:65 (Metanol: Água acidificada contendo 0,1% de ácido fórmico).

Figura 1. Metodologia da extração para os metabolitos de BTEX.

Figura 2. À direita são apresentados os cromatogramas dos metabólitos e a esquerda os registros dos padrões internos, mostrando a transição usada para quantificação.

Conclusões

Este método permite acompanhar a biodegradação de BTEX em solos, bem como reconstituir cenários históricos de contaminação, mesmo quando os BTEX originalmente responsáveis pela contaminação não estão mais presentes em concentrações detectáveis.

Agradecimentos

Fapesp, No. Processo: 2012/13925-0 e Capes.

Belller, H.R., Environ. Sci Technol. 36, 2002, 2724.

² Alumbaugh, R. E.; Gieg, L.M.; e Field, J. A. *J Chromatogr*. A 1042, **2004**, *89*.