Avaliação de metodologias de abertura de amostras de ovo de galinha para determinação de metais por espectrometria de absorção atômica

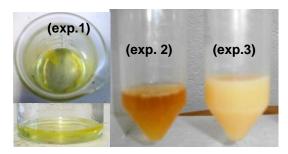
Priscila T. Fernandes¹ (IC), Guilherme C. Aguiar¹ (IC), Fabiana A. Lobo¹ (PQ), José Bento B. da Silva² (PQ), Roberta E.S. Froes-Silva¹ (PQ)*

robertafroes@iceb.ufop.br

Palavras Chave: ovo, metais, preparo de amostras

Introdução

O ovo de galinha é um alimento de elevado valor nutricional e altamente consumido na dieta dos brasileiros¹. Ele é considerado pela Organização Mundial da Saúde (OMS), como um alimento de proteína, rico em vitaminas do complexo B e vitaminas lipossolúveis. Os ovos podem conter também concentrações significativas de alguns metais, essenciais e/ou tóxicos, dependendo do contato do animal nos diversos ambientes². Por ser uma matriz complexa, a determinação de metais em ovos por espectrometria de absorção atômica (FAAS) e outras técnicas analíticas torna-se dependente de um eficiente método de abertura e/ou solubilização da amostra. Neste trabalho, foi realizado um estudo comparativo empregando abertura tradicional via úmida com HNO₃ e H₂O₂, abertura em meio básico empregando hidróxido de tetrametilamônio 25% em água (TMAH) e o reagente solubilizante Universol® 3.


Resultados e Discussão

As amostras de ovo foram homogeneizadas e secas em estufa por 24 horas e pulverizadas. Alíquotas de aproximadamente 500,0 mg da amostra seca e pulverizada foram pesadas e posteriormente submetidas aos testes de solubilização. A Tabela 1 apresenta os procedimentos de solubilização testados.

Tabela 1. Experimentos de solubilização empregando HNO₃ + H₂O₂, TMAH e Universol®

Experimento	Reagente	Tempo de aquecimento
1	3,0mL HNO ₃ + 3,0mL H ₂ O ₂	4 horas
2	2,0mL Universol®	5 minutos
3	2,0mL de TMAH	20 minutos

A Figura 1 apresenta o aspecto das solubilizações obtidas para cada experimento.

Figura 1. Aspecto das Solubilizações com parâmetros dos experimentos 1, 2 e 3.

Foi observado para os experimento 1, a formação de uma camada oleosa indicando uma incompleta solubilização da amostra. Para os experimentos 2 e 3 foram obtidas solubilizações completas, sendo que uma solução límpida foi obtida empregando o experimento 2 e uma solução turva empregando o experimento 3.

Para as soluções obtidas empregando os experimentos 2 e 3 foram determinadas as concentrações de Mg, Zn e Mn por FAAS. As concentrações variaram de 50,04 a 80,83 mg Kg⁻¹ para Mg, 3,24 a 4,74 mg Kg⁻¹ de Zn e 5,89 a 8,90 mg Kg⁻¹ para Mn. Ensaios de recuperação tiveram resultados próximos de 100%.

Conclusões

Rápidas e eficientes metodologias de abertura de amostra foram obtidas empregando Universol® e TMAH. A determinação destes e outros metais será realizada em amostras provenientes de aves criadas em locais com indícios de contaminação ambiental para avaliar a biodisponibilidade desses metais para a população empregando a metodologia de solubilização proposta neste trabalho.

Agradecimentos

PROP-UFOP, Fapemig, CNPq

¹ Universidade Federal de Ouro Preto (UFOP), Campus Universitário, Ouro Preto, MG, CEP 35400-000

² Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Av. Antônio Carlos, 6627 - Pampulha - Belo Horizonte - MG, CEP 31270-901

Alcântara, J. B. Qualidade físico-química de ovos comerciais: avaliação e manutenção da qualidade, disponível em: http://ppgca.vet.ufg.br/uploads/67/original_SEMINARIO_2_juliana.pdf?1352294854, acessados em 28 de janeiro de **2014**.

² Kwoczek M., Szefer P., Hacä E. E Grembecka M. J. Agric. Food Chem. **2006**, 54, 3015.

³ Donicci, L.C.; Silva, J.B.B.; Rodrigues, A.A.D.; Pereira, L.A.; Lara, P.C.P.; Oliveira, R.F., BR PI 1.003.893-0,**2010**. WO: 045138, **2012**.