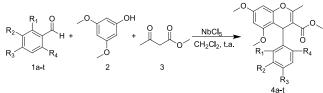
Síntese de 4*H*-cromenos através de reações multicomponentes promovida pelo Pentacloreto de Nióbio

Paula Beatriz Oshiro^{1*} (PG), Paula Souza da Silva Gomes Lima¹ (IC), Luiz Carlos da Silva Filho¹ (PQ)

*paulaoshiro@fc.unesp.br

¹POSMAT-FC-UNESP-Bauru, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 – Vargem Limpa – CEP 17033-360 – Bauru, SP/Brasil

Palavras Chave: Cromenos, Pentacloreto de Nióbio, Reações Multicomponentes.


Introdução

Cromenos constituem uma das maiores classes produtos naturais,¹ e o interesse em sua química se dá por causa de sua evidenciada atividade biológica,² assim como sua utilização como – intermediários nas sínteses de inúmeros produtos naturais e reagentes medicinais³ (Figura 1).

Figura 1: Estrutura básica do 4H-cromeno

Existem diversos métodos de síntese de derivados de cromenos, como a reação de cicloadição entre álcoois propargílicos e derivados fenólicos,⁴ reações de fechamento de anel entre brometos de arila e compostos 1,3-dicarbonílicos,⁵ reações de anelação de Michael-Tandem.⁶ Neste trabalho desenvolvemos a síntese de derivados de 4*H*-cromenos através da reação multicomponente entre derivados de benzaldeído (1 a-t), 3,5-dimetoxifenol (2) e acetoacetato de metila (3), utilizando pentacloreto de nióbio como ácido de Lewis (Esquema 1).

Esquema 1: RMC na presença do NbCl₅

Resultados e Discussão

As reações foram realizadas em temperatura ambiente, sob atmosfera inerte de N_2 e utilizando CH_2Cl_2 anidro como solvente, com um tempo reacional de 72 horas. Nos testes realizados foram utilizados 1,0 eq. de $NbCl_5$. Os produtos obtidos foram isolados por coluna cromatográfica em sílica gel e caracterizados por métodos espectrométricos (MS) e espectroscópicos (RMN 1H , RMN ^{13}C e FTIR).

Os resultados obtidos estão mostrados na Tabela 1. Os dados demonstram que o NbCl₅ é um bom agente promotor da RMC entre derivados de benzaldeído, acetoacetato de metila e 3,5-dimetoxifenol para a síntese de derivados 4*H*-cromenos, obtendo-se bons rendimentos (62-91%).

Tabela 1: Resultados obtidos através da RMC promovida pelo NbCl₅

promovida pelo 1450is					
Aldeído	R ₁	R ₂	R ₃	R ₄	Rendimento (%)
1a	Н	Н	Н	Н	78 (4a)
1b	CI	Н	Н	Н	65 (4b)
1c	Н	CI	Н	Н	72 (4c)
1d	Н	Н	CI	Н	75 (4d)
1e	Br	Н	Н	Н	65 (4e)
1f	Н	Br	Н	Н	62 (4f)
1g	Н	Н	Br	Н	64 (4g)
1h	F	Н	Н	Н	65 (4h)
1i	Н	F	Н	Н	72 (4i)
1j	Н	Н	F	Н	67 (4j)
1k	Н	CH ₃	Н	Н	75 (4k)
11	Н	Н	CH₃	Н	82 (4I)
1m	Н	OCH ₃	Н	Н	77 (4m)
1n	Н	Н	OCH ₃	Н	71 (4n)
1o	Н	NO_2	Н	Н	73 (4o)
1p	Н	Н	NO_2	Н	84 (4p)
1q	СНз	Н	CH₃	CH₃	68 (4q)
1r	Н	Н	SCH₃	Н	82 (4r)
1s	Н	Н	$C(CH_3)_3$	Н	73 (4s)
1t	Н	Н	`Ph ´	Н	91 (4t)

Conclusões

Em conclusão, este trabalho mostra que o NbCl₅ promove um novo método de síntese de derivados de 4*H*-cromenos com bons rendimentos e tempos reacionais, em condições brandas.

Agradecimentos

Os autores agradecem à FAPESP, CNPq, CAPES e à CBMM pelo NbCl₅.

¹Schweizer E. E. and Meeder-Nycz O., in *Chromenes, Chromanes, Chromones*, ed. Ellis G. P., Wiley-Interscience, New York, **1977**, 11-139.

²Khafagy M. M., El-Wahas A. H. F. A., Eid F. A., El-Agrody A. M., Farmaco, **2002**, 57, 715.

³Appel B., Salehand N. N. R., Langer P., *Chem. Eur. J.*, **2006**, 12, 1221-1236.

⁴Nishibayashi Y. et al. *J. Am. Chem. Soc.*, **2002**, 124, 7900-7901.

⁵Fang Y. W. and Li C. Z., J. Org. Chem., 2006, 71, 6427-6431

⁶Ye L.-W., Sun X. L., Zhu C.-Y. and Tang Y., Org. Lett., **2006**, 8, 3853-3856.